Skip to main content
Log in

Photoinduced electron transfer reaction of tris(4,4′-dicarboxyl-2,2′-bipyridine)ruthenium(ii) ion with organic sulfides

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

[Ru(dcbpy)3]2+ (dcbpy = 4,4′-dicarboxyl-2,2′-bipyridine) ion, in the excited state, undergoes facile electron transfer (ET) reaction with aryl methyl and dialkyl sulfides and the quenching rate constant, kq value is sensitive to the structure of the sulfide. The detection of the sulfur radical cation in this system using time-resolved transient absorption spectroscopy confirms the ET nature of the reaction. The semiclassical theory of ET has been successfully applied to the photoluminescence quenching of [Ru(dcbpy)3]2+ with sulfides. This is the first report for the generation and detection ofsulfide radical cations from the excited state reaction of Ru(ii) complex with organic sulfides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. A. Prütz, in Sulfur-Centered Reactive Intermediates in Chemistry and Biology, ed. C. Chatgilialoglu, K.-D. Asmus, Plenum Press, New York, 1990, pp. 389–399.

  2. A. Rauk, Dalton Trans., 2008, 1273

    Google Scholar 

  3. Y. Watanabe, T. Numata, T. Iyanagi and S. Oae, Bull. Chem. Soc. Jpn., 1981, 54, 1163

    Article  CAS  Google Scholar 

  4. U. C. Yoon and P. A. Mariano, Acc. Chem. Res., 1992, 25, 233.

    Article  CAS  Google Scholar 

  5. J. R. Cashman, J. Proudfoot, Y.-K. Ho, M. S. Chin and L. D. Olsen, J. Am. Chem. Soc., 1989, 111, 4844

    Article  CAS  Google Scholar 

  6. E. Baciocchi, E. Fasella, O. Lanzalunga and M. Mattioli, Angew. Chem., Int. Ed., 1993, 32, 1071.

    Article  Google Scholar 

  7. W. Adam, J. E. Arguello and A. B. Penenory, J. Org. Chem., 1998, 63, 3905

    Article  CAS  Google Scholar 

  8. S. Kobayashi, M. Nakano, T. Kimura and A. P. Schaap, Biochemistry, 1987, 26, 5019

    Article  CAS  PubMed  Google Scholar 

  9. T. Tobien, W. J. Cooper, M. G. Nickelsen, E. Pernase, K. E. O’Shea, K. -D. Asmus, Environ. Sci. Technol., 2000, 34, 1286.

    Article  CAS  Google Scholar 

  10. C. A. Bunton and N. D. Gillitt, J. Phys. Org. Chem., 2002, 15, 29

    Article  CAS  Google Scholar 

  11. S. Ozaki, S. Watanabe, S. Hayasaka and M. Konuma, Chem. Commun., 2001, 1654.

    Google Scholar 

  12. E. Baciocchi, T. Del Giacco, F. Elisei and A. Lapi, J. Org. Chem., 2006, 71, 853

    Article  CAS  PubMed  Google Scholar 

  13. T. Del Giacco, F. Elisei and O. Lanzalunga, Phys. Chem. Chem. Phys., 2000, 2, 1701.

    Article  Google Scholar 

  14. E. Baciocchi, C. Crescenzi and O. Lanzalunga, Tetrahedron, 1997, 53, 4469

    Article  CAS  Google Scholar 

  15. E. Baciocchi, C. Rol, E. Scamosci and G. V. Sebastiani, J. Org. Chem., 1991, 56, 5498.

    Article  CAS  Google Scholar 

  16. S. Ozaki, P. R. Ortiz and de Montellano, J. Am. Chem. Soc., 1995, 117, 7056.

    Article  CAS  Google Scholar 

  17. G. K. Bobrowski, G. L. Hug, D. Pogocki, B. Marciniak and C. Schöneich, J. Am. Chem. Soc., 2007, 129, 9236

    Article  CAS  PubMed  Google Scholar 

  18. N. Karakostas, S. Naumov and O. Brede, J. Phys. Chem. A., 2007, 111, 71

    Article  CAS  PubMed  Google Scholar 

  19. E. Baciocchi, T. Del Giacco, M. F. Gerini and O. Lanzalunga, Org. Lett., 2006, 8, 641.

    Article  CAS  PubMed  Google Scholar 

  20. M. L. Huang and A. Rauk, J. Phys. Chem. A., 2004, 108, 6222

    Article  CAS  Google Scholar 

  21. P. Fillipiak, G. L. Hug, I. Carmichael, A. Korzeniowska-Sobczuk, K. Bobrowski and B. Marciniak, J. Phys. Chem. A., 2004, 108, 6503

    Article  CAS  Google Scholar 

  22. A. Korzeniowska-Sobczuk, G. L. Hug, I. Carmichael and K. Bobrowski, J. Phys. Chem. A, 2002, 106, 9251.

    Article  CAS  Google Scholar 

  23. C. Schöneich, D. Pogocki, G. L. Hug and K. Bobrowski, J. Am. Chem. Soc., 2003, 125, 13700

    Article  PubMed  CAS  Google Scholar 

  24. R. S. Glass, Top. Curr. Chem., 1999, 205, 1

    Article  CAS  Google Scholar 

  25. K.-D. Asmus and M. Bonifačic, in S-Centered Radicals, ed. Z. B. Alfassi, Wiley, New York, 1999, pp. 141–191.

  26. K. Bobrowski, G. L. Hug, B. Marciniak, B. Miller, C. Schöneich, J. Am. Chem. Soc., 1997, 119, 8000.

    Article  CAS  Google Scholar 

  27. S. E. Kern, A. Illies, M. L. McKee and M. Peschke, J. Am. Chem. Soc., 1993, 115, 12510

    Article  Google Scholar 

  28. M. L. McKee, J. Phys. Chem., 1993, 97, 10971

    Article  CAS  Google Scholar 

  29. K.-D. Asmus, Acc. Chem. Res., 1979, 12, 436.

    Article  CAS  Google Scholar 

  30. E. Baciocchi, M. Bietti and O. Lanzalunga, Acc. Chem. Res., 2000, 33, 243

    Article  CAS  PubMed  Google Scholar 

  31. M. Ioele, S. Steenken and E. Baciocchi, J. Phys. Chem. A, 1997, 101, 2979

    Article  CAS  Google Scholar 

  32. E. Baciocchi, O. Lanzalunga and B. Pirozzi, Tetrahedron, 1997, 53, 12287.

    Article  CAS  Google Scholar 

  33. E. Baciocchi, O. Lanzalunga, M. Malandrucco, M. Ioele and S. Steenken, J. Am. Chem. Soc., 1996, 118, 8973

    Article  CAS  Google Scholar 

  34. E. Baciocchi, O. Lanzalunga and F. Marconi, Tetrahedron Lett., 1994, 35, 9771.

    Article  CAS  Google Scholar 

  35. H. Yokoi, A. Hatta, K. Ishiguro and Y. Sawaki, J. Am. Chem. Soc., 1998, 120, 12728

    Article  CAS  Google Scholar 

  36. L. Engman, J. Lind and G. Merenyi, J. Phys. Chem., 1994, 98, 3174

    Article  CAS  Google Scholar 

  37. C. Schöneich, A. Aced, K.-D. Asmus, J. Am. Chem. Soc., 1993, 115, 11376.

    Article  Google Scholar 

  38. T. K. Ganesan, S. Rajagopal, J. R. Basco Bharathy and A. I. M. Sheriff, J. Org. Chem., 1998, 6, 131.

    Google Scholar 

  39. M. Ganesan, V. K. Sivasubramanian, T. Rajendran, K. Swarnalatha, S. Rajagopal and R. Ramaraj, Tetrahedron, 2005, 61, 4863.

    Article  CAS  Google Scholar 

  40. C. Srinivasan, A. Chellamani and S. Rajagopal, J. Org. Chem., 1985, 50, 1201

    Article  CAS  Google Scholar 

  41. C. Srinivasan, S. Rajagopal and A. Chellamani, J. Chem. Soc., Perkin Trans. 2, 1990, 1839.

    Google Scholar 

  42. S. Balakumar, P. Thanasekaran, S. Rajagopal and R. Ramaraj, Tetrahedron, 1995, 51, 4801

    Article  CAS  Google Scholar 

  43. T. K. Ganesan, S. Rajagopal, J. Basco Bharathy, Tetrahedron, 2000, 56, 5885

    Article  CAS  Google Scholar 

  44. J. R. Basco Bharathy, T. K. Ganesan, E. Rajkumar, S. Rajagopal, B. Manimaran, T. Rajendran and K.-L. Lu, Tetrahedron, 2005, 61, 4679.

    Article  CAS  Google Scholar 

  45. G. Allen Gnanaraj, S. Rajagopal, C. Srinivasan and K. Pitchumani, Tetrahedron, 1993, 49, 4721

    Article  Google Scholar 

  46. G. Allen Gnanaraj, S. Rajagopal and C. Srinivasan, Tetrahedron, 1994, 50, 9447.

    Article  Google Scholar 

  47. X. T. Zhou, H. B. Ji, Z. Cheng, J. C. Xu, X. L. Pei and L. F. Wang, Bioorg. Med. Chem. Lett., 2007, 17, 4650.

    Article  CAS  PubMed  Google Scholar 

  48. M. Chen, K. P. Ghiggino, S. H. Thang and G. J. Wilson, Angew. Chem., Int. Ed., 2005, 44, 4368

    Article  CAS  Google Scholar 

  49. H. Durr and S. Bossmann, Acc. Chem. Res., 2001, 34, 905.

    Article  CAS  PubMed  Google Scholar 

  50. A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser and A. von Zelewsky, Coord. Chem. Rev., 1988, 84, 85

    Article  CAS  Google Scholar 

  51. K. Kalyanasundaram, Coord. Chem. Rev., 1982, 46, 159.

    Article  CAS  Google Scholar 

  52. N. Kitamura, S. Rajagopal and S. Tazuke, J. Phys. Chem., 1987, 91, 3767

    Article  CAS  Google Scholar 

  53. S. Rajagopal, G. Allen Gnanaraj, A. Mathew and C. Srinivasan, J. Photochem. Photobiol., A, 1992, 69, 83

    Article  CAS  Google Scholar 

  54. P. Thanasekaran, T. Rajendran, S. Rajagopal, C. Srinivasan, R. Ramaraj, P. Ramamurthy and B. Venkatachalapathy, J. Phys. Chem. A, 1997, 101, 8195.

    Article  CAS  Google Scholar 

  55. P. Thanasekaran, S. Rajagopal and C. Srinivasan, J. Chem. Soc. Faraday Trans., 1998, 94, 3339

    Article  CAS  Google Scholar 

  56. T. Rajendran, P. Thanasekaran, S. Rajagopal, G. Allen Gnanaraj, C. Srinivasan, P. Ramamurthy, B. Venkatachalapathy, B. Manimaran and K. Lu, Phys. Chem. Chem. Phys., 2001, 3, 2063.

    Article  CAS  Google Scholar 

  57. K. Swarnalatha, E. Rajkumar, S. Rajagopal, R. Ramaraj, Y.-L. Lu, K.-L. Lu and P. Ramamurthy, J. Photochem. Photobiol., A, 2005, 171, 83.

    Article  CAS  Google Scholar 

  58. P. G. Potvin, P. U. Luyen and J. Brackow, J. Am. Chem. Soc., 2003, 125, 4894

    Article  CAS  PubMed  Google Scholar 

  59. I. G. Gauthier, F. Odobel, M. Alebbi, R. Argazzi, E. Costa, C. A. Bignozzi, P. Qu and G. J. Meyer, Inorg. Chem., 2001, 40, 6073

    Article  CAS  Google Scholar 

  60. M. Montalti, S. Wadhwa, W. Y. Kim, A. Kipp and R. H. Schmehl, Inorg. Chem., 2000, 39, 76.

    Article  CAS  PubMed  Google Scholar 

  61. Md. K. Nazeeruddin and K. Kalayanasundram, Inorg. Chem., 1989, 28, 4251

    Article  CAS  Google Scholar 

  62. M. Furue, K. Maruyama, T. Oguni, M. Naiki and M. Kamachi, Inorg. Chem., 1992, 31, 3792

    Article  CAS  Google Scholar 

  63. C. Turro, J. M. Zaleski, Y. M. Karabatsos and D. G. Nocera, J. Am. Chem. Soc., 1996, 118, 6060

    Article  CAS  Google Scholar 

  64. S. Anderson, C. E. Constable, R. K. Seddon, E. J. Turp, E. J. Baggott and J. M. Pilling, J. Chem. Soc., Dalton Trans., 1985, 2247.

    Google Scholar 

  65. D. Kuang, S. Ito, B. Wenger, C. Klein, J. E. Moser, R. Humphy-Baker, S. M. Zakeeruddin and M. Gratzel, J. Am. Chem. Soc., 2006, 128, 4146

    Article  CAS  PubMed  Google Scholar 

  66. B. Mahrov, G. Boschloo, A. Hagfeldt, H. Siegbahn and H. Rensmo, J. Phys. Chem. B, 2004, 108, 11604

    Article  CAS  Google Scholar 

  67. M. Gratzel, Nature, 2001, 414, 338

    Article  CAS  PubMed  Google Scholar 

  68. R. J. Foster, T. E. Keyes and J. G. Ves, International Supramolecular Assemblies, Wiley, New York, 2003, ch. 6.

    Google Scholar 

  69. J. R. Durrant, S. A. Haque and E. Palomares, Chem. Commun., 2006, 3279

    Google Scholar 

  70. J. A. Pollard, D. Zhang, J. A. Downing, F. J. Knorr and J. L. McHale, J. Phys. Chem. A, 2005, 109, 11443.

    Article  CAS  PubMed  Google Scholar 

  71. E. Coronado, J. R. Galan-Mascaro, C. Marti-Gastaldo, E. Palomares, J. R. Durrant, R. Vilar, M. Gratzel, Md. K. Nazeeruddin, J. Am. Chem. Soc., 2005, 127, 12351.

    Article  CAS  PubMed  Google Scholar 

  72. G. Sprintschnik, H. W. Sprintschnik, P. P. Kirsch and D. G. Whitten, J. Am. Chem. Soc., 1977, 99, 2927

    Article  Google Scholar 

  73. G. Sprintschnik, H. W. Sprintschnik, P. P. Kirsch and D. G. Whitten, J. Am. Chem. Soc., 1977, 15, 4947.

    Article  Google Scholar 

  74. C. L. Donnici, D. H. M. Filho, L. L. C. Moreira, G. T. Dos Reis, E. S. Cordeiro, I. M. F. Olivera, S. Carvalho and E. B. Paniago, J. Braz. Chem. Soc., 1988, 9, 455.

    Google Scholar 

  75. P. Ramamurthy, Chem. Edu., 1998, 9, 56.

    Google Scholar 

  76. W. Ando, Sulfur Rep., 1981, 1, 147

    Article  CAS  Google Scholar 

  77. Y. Watanabe, Y. Iyanagi and S. Oae, Tetrahedron Lett., 1980, 21, 3685

    Article  CAS  Google Scholar 

  78. Y. Goto, T. Matsui, S.-i. Ozaki, Y. Watanabe and S. Fukuzumi, J. Am. Chem. Soc., 1999, 121, 9497.

    Article  CAS  Google Scholar 

  79. J. March, Reactions, Mechanisms and Structure, John Wiley & Sons, 1992.

    Google Scholar 

  80. R. A. Marcus and N. Sutin, Biochim. Biophys. Acta, 1985, 811, 265

    Article  CAS  Google Scholar 

  81. H. B. Gray and J. R. Winkler, Annu. Rev. Biochem., 1996, 65, 537

    Article  CAS  PubMed  Google Scholar 

  82. B. S. Brunschwig and N. Sutin, Coord. Chem. Rev., 1999, 187, 233.

    Article  CAS  Google Scholar 

  83. Electron Transfer in Chemistry, ed. V. Balzani, Wiley-VCH, Weinheim, 2001.

    Google Scholar 

  84. D. Rhem and A. Weller, Isr. J. Chem., 1970, 8, 259

    Article  Google Scholar 

  85. D. Rhem and A. Weller, Ber. Bunsen. Ges. Phys. Chem., 1969, 73, 834.

    Google Scholar 

  86. There is no significant change in the Ru-N bond distance when [Ru(NN)3]+ is formed after electron transfer from phenolate ion to *[Ru(NN)3]2+. But a difference of 0.13 Å is noticed in the C-O bond distance when phenoxyl radical is formed from the phenolate ion after ET. To, account for this bond distance during ET a value of 0.2 eV has been calculated for λi.(see ref. 24-26).

  87. G. J. Kavarnos and N. J. Turro, Chem. Rev., 1986, 86, 401.

    Article  CAS  Google Scholar 

  88. M. Z. Smoluchowski, Phys. Chem., 1917, 92, 129

    Google Scholar 

  89. R. M. Fuoss, J. Am. Chem. Soc., 1958, 80, 5059.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seenivasan Rajagopal.

Additional information

Electronic supplementary information (ESI) available: Fig. S1 and S2, Table S1. See DOI: 10.1039/b806974c

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajkumar, E., Rajagopal, S. Photoinduced electron transfer reaction of tris(4,4′-dicarboxyl-2,2′-bipyridine)ruthenium(ii) ion with organic sulfides. Photochem Photobiol Sci 7, 1407–1414 (2008). https://doi.org/10.1039/b806974c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b806974c

Navigation