Skip to main content
Log in

Stress-induced environmental changes in a single cell as revealed by fluorescence lifetime imaging

  • Communication
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The fluorescence lifetime image of HeLa cells expressing an enhanced green fluorescent protein (EGFP)-fusion protein changes under stress, which allows noninvasive determination of the status of individual cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes and references

  1. J. R. Lakowicz and K. W. Berndt, Lifetime-selective fluorescence imaging using an rf phase-sensitive camera, Rev. Sci. Instrum., 1991, 62, 1727–1734.

    Article  CAS  Google Scholar 

  2. W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf and C. Biskup, Fluorescence lifetime imaging by time-correlated single-photon counting, Microsc. Res. Tech., 2004, 63, 58–66.

    Article  CAS  Google Scholar 

  3. K. Suhling, P. M. W. French and D. Phillips, Time-resolved fluorescence microscopy, Photochem. Photobiol. Sci., 2005, 4, 13–22.

    Article  CAS  Google Scholar 

  4. H.-P. Wang, T. Nakabayashi, K. Tsujimoto, S. Miyauchi, N. Kamo and N. Ohta, Fluorescence lifetime image of a single halobacterium, Chem. Phys. Lett., 2007, 442, 441–444.

    Article  CAS  Google Scholar 

  5. K. M. Hanson, M. J. Behne, N. P. Barry, T. M. Mauro, E. Gratton and R. M. Clegg, Two-photon fluorescence lifetime imaging of the skin stratum corneum pH gradient, Biophys. J., 2002, 83, 1682–1690.

    Article  CAS  Google Scholar 

  6. A. G. Harpur, F. S. Wouters and P. I. H. Bastiaens, Imaging FRET between spectrally similar GFP molecules in single cells, Nat. Biotechnol., 2001, 19, 167–169.

    Article  CAS  Google Scholar 

  7. R. V. Krishnan, A. Masuda, V. E. Centonze and B. Herman, Quantitative imaging of protein-protein interactions by multiphoton fluorescence lifetime imaging microscopy using a streak camera, J. Biomed. Opt., 2003, 8, 362–367.

    Article  CAS  Google Scholar 

  8. H. Wallrabe and A. Periasamy, Imaging protein molecules using FRET and FLIM microscopy, Curr. Opin. Biotechnol., 2005, 16, 19–27.

    Article  CAS  Google Scholar 

  9. A. Strebel, T. Harr, F. Bachmann, M. Wernli and P. Erb, Green fluorescent protein as a novel tool to measure apoptosis and necrosis, Cytometry, 2001, 43, 126–133.

    Article  CAS  Google Scholar 

  10. Y.-S. Huang, T. Karashima, M. Yamamoto and H. Hamaguchi, Molecular-level investigation of the structure, transformation, and bioactivity of single living fission yeast cells by time- and space-resolved Raman spectroscopy, Biochemistry, 2005, 44, 10009–10019.

    Article  CAS  Google Scholar 

  11. C. Krafft, T. Knetschke, R. H. W. Funk and R. Salzer, Studies on stress-induced changes at the subcellular level by Raman microspectroscopic mapping, Anal. Chem., 2006, 78, 4424–4429.

    Article  CAS  Google Scholar 

  12. R. Y. Tsien, The green fluorescent protein, Annu. Rev. Biochem., 1998, 67, 509–544.

    Article  CAS  Google Scholar 

  13. M. Zimmer, Green fluorescent protein (GFP): applications, structure, and related photophysical behavior, Chem. Rev., 2002, 102, 759–781.

    Article  CAS  Google Scholar 

  14. M. Ormö, A. B. Cubitt, K. Kallio, L. A. Gross, R. Y. Tsien and S. J. Remington, Crystal structure of the Aequorea victoria green fluorescent protein, Science, 1996, 273, 1392–1395.

    Article  Google Scholar 

  15. F. Yang, L. G. Moss and G. N. Phillips Jr., The molecular structure of green fluorescent protein, Nat. Biotechnol., 1996, 14, 1246–1251.

    Article  CAS  Google Scholar 

  16. K. Brejc, T. K. Sixma, P. A. Kitts, S. R. Kain, R. Y. Tsien, M. Ormö and S. J. Remington, Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein, Proc. Natl. Acad. Sci. USA, 1997, 94, 2306–2311.

    Article  CAS  Google Scholar 

  17. R. Heim and R. Y. Tsien, Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer, Curr. Biol., 1996, 6, 178–182.

    Article  CAS  Google Scholar 

  18. T.-T. Yang, P. Sinai, G. Green, P. A. Kitts, Y. -T. Chen, L. Lybarger, R. Chervenak, G. H. Patterson, D. W. Piston and S. R. Kain, Improved fluorescence and dual color detection with enhanced blue and green variants of the green fluorescent protein, J. Biol. Chem., 1998, 273, 8212–8216.

    Article  CAS  Google Scholar 

  19. A. Bardsley, K. McDonald and R. E. Boswell, Distribution of tudor protein in the Drosophila embryo suggests separation of functions based on site of localization, Development, 1993, 119, 207–219.

    Article  CAS  Google Scholar 

  20. T. Thomson and P. Lasko, Tudor and its domains: germ cell formation from a Tudor perspective, Cell Res., 2005, 15, 281–291.

    Article  CAS  Google Scholar 

  21. I. Nagao, Y. Aoki, M. Tanaka and M. Kinjo, Analysis of the molecular dynamics of medaka nuage proteins by fluorescence correlation spectroscopy and fluorescence recovery after photobleaching, FEBS J., 2008, 275, 341–349.

    Article  CAS  Google Scholar 

  22. T. Nakabayashi, M. Kinjo and N. Ohta, Electric field effects on fluorescence of the green fluorescent protein, Chem. Phys. Lett., in press.

  23. H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskaia and W. G. J. H. M. van Sark, Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution, J. Microsc., 2002, 206, 218–224.

    Article  CAS  Google Scholar 

  24. R. Pepperkok, A. Squire, S. Geley and P. I. H. Bastiaens, Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy, Curr. Biol., 1999, 9, 269–272.

    Article  CAS  Google Scholar 

  25. S. T. Hess, E. D. Sheets, A. Wagenknecht-Wiesner and A. A. Heikal, Quantitative analysis of the fluorescence properties of intrinsically fluorescent proteins in living cells, Biophys. J., 2003, 85, 2566–2580.

    Article  CAS  Google Scholar 

  26. A. A. Heikal, S. T. Hess and W. W. Webb, Multiphoton molecular spectroscopy and excited-state dynamics of enhanced green fluorescent protein (EGFP): acid-base specificity, Chem. Phys., 2001, 274, 37–55.

    Article  CAS  Google Scholar 

  27. K. Suhling, D. M. Davis and D. Phillips, The influence of solvent viscosity on the fluorescence decay and time-resolved anisotropy of green fluorescent protein, J. Fluoresc., 2002, 12, 91–95.

    Article  CAS  Google Scholar 

  28. H. Fukuda, M. Arai and K. Kuwajima, Folding of green fluorescent protein and the Cycle3 mutant, Biochemistry, 2000, 39, 12025–12032.

    Article  CAS  Google Scholar 

  29. B. G. Reid and G. C. Flynn, Chromophore formation in green fluorescent protein, Biochemistry, 1997, 36, 6786–6791.

    Article  CAS  Google Scholar 

  30. P. R. Callis and B. K. Burgess, Tryptophan fluorescence shifts in proteins from hybrid simulations: an electrostatic approach, J. P h y s. Chem. B, 1997, 101, 9429–9432.

    Article  CAS  Google Scholar 

  31. E. S. Park, S. S. Andrews, R. B. Hu and S. G. Boxer, Vibrational Stark spectroscopy in proteins: a probe and calibration for electrostatic fields, J. Phys. Chem. B, 1999, 103, 9813–9817.

    Article  CAS  Google Scholar 

  32. J. M. Kriegl, K. Nienhaus, P. Deng, J. Fuchs and G. U. Nienhaus, Ligand dynamics in a protein internal cavity, Proc. Natl. Acad. Sci. USA, 2003, 100, 7069–7074.

    Article  CAS  Google Scholar 

  33. N. Ohta, Electric field effects on photochemical dynamics in solid films, Bull. Chem. Soc. Jpn., 2002, 75, 1637–1655.

    Article  CAS  Google Scholar 

  34. Y. Ito, T. Kawama, I. Urabe and T. Yomo, Evolution of an arbitrary sequence in solubility, J. Mol. Evol., 2004, 58, 196–202.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuhiro Ohta.

Additional information

Electronic supplementary information (ESI) available: Material and methods. See DOI: 10.1039/b805032e

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakabayashi, T., Nagao, I., Kinjo, M. et al. Stress-induced environmental changes in a single cell as revealed by fluorescence lifetime imaging. Photochem Photobiol Sci 7, 671–674 (2008). https://doi.org/10.1039/b805032e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b805032e

Navigation