Skip to main content
Log in

Time-resolved methods in biophysics. 8. Frequency domain fluorometry: applications to intrinsic protein fluorescence

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Time-resolved fluorescence spectroscopy is an indispensable tool in the chemical, physical and biological sciences for the study of fast kinetic processes in the subpicosecond to microsecond time scale. This review focuses on the development and modern implementation of the frequency domain approach to time-resolved fluorescence. Both intensity decay (lifetime) and anisotropy decay (dynamic polarization) will be considered and their application to intrinsic protein fluorescence will be highlighted. In particular we shall discuss the photophysics of the aromatic amino acids, tryptophan, tyrosine and phenylalanine, which are responsible for intrinsic protein fluorescence. This discussion will be illustrated with examples of frequency domain studies on several protein systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. G. Stokes, Philos. Trans. R. Soc. London, 1852, 142, 463–562.

    Article  Google Scholar 

  2. R. W. Wood, R. Soc. Proc. A, 1921, 99, 362–371.

    CAS  Google Scholar 

  3. E. Gaviola, Ann. Phys. Leipzig, 1926, 81, 681–710.

    Article  CAS  Google Scholar 

  4. E. Gaviola, Z. Physik A, 1927, 42, 853–861.

    Article  CAS  Google Scholar 

  5. F. Dushinsky, Z. Physik., 1933, 81, 7–21.

    Article  Google Scholar 

  6. G. Weber, J. Chem. Phys., 1977, 66, 4081–4091.

    Article  CAS  Google Scholar 

  7. W. Szymanowski, Z. Phys., 1935, 95, 440–449.

    Article  CAS  Google Scholar 

  8. O. Maercks, Z. Phys., 1938, 109, 685–699.

    Article  CAS  Google Scholar 

  9. E. A. Bailey and G. K. Rollefson, J. Chem. Phys., 1952, 21, 1315–1322.

    Article  Google Scholar 

  10. J. B. Birks and W. A. Little, Proc. Phys. Soc., London, Sect. A, 1953, 66, 921–928.

    Article  Google Scholar 

  11. A. Schmillen, Z. Phys., 1953, 135, 294–308.

    Article  CAS  Google Scholar 

  12. C. F. Ravilious, R. T. Farrar and S. H. Liebson, J. Opt. Soc. Am., 1954, 44, 238–241.

    Article  CAS  Google Scholar 

  13. R. Bauer and M. Rozwadowski, Bull. Acad. Pol. Sci. Ser. Math. Astron. Phys., 1959, 7, 365–368.

    CAS  Google Scholar 

  14. J. B. Birks and D. J. Dyson, J. Sci. Instrum., 1961, 38, 282–285.

    Article  Google Scholar 

  15. R. D. Spencer and G. Weber, Anal. N. Y. Acad. Sci., 1969, 158, 361–376.

    Article  CAS  Google Scholar 

  16. H. P. Haar and M. Hauser, Rev. Sci. Instrum., 1978, 49, 632–633.

    Article  CAS  PubMed  Google Scholar 

  17. E. Gratton and M. Limkeman, Biophys. J., 1983, 44, 315–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. D. M. Jameson, E. Gratton and R. D. Hall, Appl. Spectrosc. Rev., 1984, 20, 55–106.

    Article  CAS  Google Scholar 

  19. E. Gratton, D. M. Jameson, N. Rosato and G. Weber, Rev. Sci. Instrum., 1984, 55, 486–494.

    Article  CAS  Google Scholar 

  20. J. R. Alcala, E. Gratton and D. M. Jameson, Anal. Instrum., 1985, 14, 225–250.

    Article  CAS  Google Scholar 

  21. M. A. Digman, V. R. Caiolfa, M. Zamai and E. Gratton, Biophys. J., 2008, 94, L14–L16.

    Article  CAS  PubMed  Google Scholar 

  22. B. Barbieri, E. Terpetschnig and D. M. Jameson, Anal. Biochem., 2005, 344, 298–300.

    Article  CAS  PubMed  Google Scholar 

  23. G. D. Reinhart, P. Marzola, D. M. Jameson and E. Gratton, J. Fluoresc., 1991, 1, 153–163.

    Article  CAS  PubMed  Google Scholar 

  24. R. D Spencer and G. Weber, J. Chem. Phys., 1970, 52, 1654–1663.

    Article  CAS  Google Scholar 

  25. E. Gratton, D. M. Jameson and R. D. Hall, Ann. Rev. Biophys. and Bioeng., 1984, 13, 105–124.

    Article  CAS  Google Scholar 

  26. D. M. Jameson, J. C. Croney and P. D. J. Moens, Methods Enzymol., 2003, 360, 1–43.

    Article  CAS  PubMed  Google Scholar 

  27. G. Weber, J. Phys. Chem. B, 1981, 85, 949–953.

    Article  CAS  Google Scholar 

  28. D. M. Jameson and G. Weber, J. Phys. Chem., 1981, 85, 953–958.

    Article  CAS  Google Scholar 

  29. D. M. Jameson and E. Gratton, Analysis of Heterogeneous Emissions by Multifrequency Phase and Modulation Fluorometry, in New Directions in Molecular Luminescence, ed. D. Eastwood, ASTM STP 822, American Society of Testing and Materials, Philadelphia, 1983, pp. 67–81.

    Chapter  Google Scholar 

  30. J. R. Alcala, E. Gratton and F. G. Prendergast, Biophys. J., 1987, 51, 587–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. J. R. Alcala, E. Gratton and F. G. Prendergast, Biophys. J., 1987, 51, 597–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. D. M. Jameson, E. Gratton and J. F. Eccleston, Biochemistry, 1987, 26, 3894–3901.

    Article  CAS  PubMed  Google Scholar 

  33. I. Gryczynski, M. L. Johnson and J. R. Lakowicz, Biophys. Chem., 1994, 52, 1–13.

    Article  CAS  PubMed  Google Scholar 

  34. J. M. Beechem, E. Gratton, M. Ameloot, J. R. Knutson and L. Brand, in Topics in Fluorescence Spectroscopy II, ed. J. R. Lakowicz, Plenum, New York, 1991, pp. 241–305.

  35. M. Tramier, O. Holub, J. C. Croney, T. Ishi, S. E. Seifried and D. M. Jameson, in Fluorescence Spectroscopy, Imaging and Probes: New Tools in Chemical, Physical and Life Sciences, ed. R. Kraayenhof, A. J. W. G. Visser and H. C. Gerritsen, Springer, Berlin, 2002, pp. 111–120.

  36. J. C. Brochon, Methods Enzymol., 1994, 40, 262–311.

    Article  Google Scholar 

  37. B. Valeur, Molecular fluorescence: Principles and Applications, Wiley-VCH, Weinheim, 2002.

    Google Scholar 

  38. O. Shimomura, F. H. Johnson and Y. Saiga, J. Cell. Comp. Physiol., 1962, 59, 223–239.

    Article  CAS  PubMed  Google Scholar 

  39. F. W. J. Teale and G. Weber, Biochem. J., 1957, 65, 476–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. G. Weber, Biochem. J., 1960, 75, 335–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. G. Weber, Biochem. J., 1960, 75, 345–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. G. Weber, in Light and Life, ed. W. D. McElroy and B. Glass, Johns Hopkins Press, Baltimore, 1961, pp. 82–106.

  43. R. F. Chen, G. G. Vurek and N. Alexander, Science, 1967, 156, 949–951.

    Article  CAS  PubMed  Google Scholar 

  44. R. A. Badley and F. W. Teale, J. Mol. Biol., 1969, 44, 71–88.

    Article  CAS  PubMed  Google Scholar 

  45. P. R. Callis, Methods Enzymol., 1997, 278, 113–150.

    Article  CAS  PubMed  Google Scholar 

  46. P. R. Callis and T. Q. Liu, J. Phys. Chem. B, 2004, 108, 4248–4259.

    Article  CAS  Google Scholar 

  47. J. B. A. Ross, W. R. Laws, K. W. Rousslang and H. W. Wyssbrod, in Topics in Fluorescence Spectroscopy Volume 3: Biochemical Applications, ed. J. R. Lakowicz, Plenum Press, New York, 1992, pp. 1–53.

  48. W. B. De Lauder and P. Wahl, Biochemistry, 1970, 9, 2750–2754.

    Article  CAS  PubMed  Google Scholar 

  49. A. White, Biochem. J., 1959, 71, 217–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. D. M. Rayner and A. G. Szabo, Can. J. Chem., 1978, 56, 743–745.

    Article  CAS  Google Scholar 

  51. A. G. Szabo and D. M. Rayner, J. Am. Chem. Soc., 1980, 102, 554–563.

    Article  CAS  Google Scholar 

  52. J. B. A. Ross, W. R. Laws and M. Shea, in Protein Structures: Methods in Protein Structure and Structure Analysis, ed. V. N. Unversky and E. A. Permyakov, Nova Science Publishers, Inc., New York, 2006, pp. 55–72.

  53. J. M. Beechem and L. Brand, Annu. Rev. Biochem., 1985, 54, 43–71.

    Article  CAS  PubMed  Google Scholar 

  54. R. W. Alston, M. Lasagna, G. R. Grimsley, J. M. Scholtz, G. D. Reinhart and C. N. Pace, Biophys. J., 2008, DOI: 10.1529/biophysj.1107.116921.

    Google Scholar 

  55. Y. Chen and M. D. Barkley, Biochemistry, 1998, 37, 9976–9982.

    Article  CAS  PubMed  Google Scholar 

  56. Y. Chen, B. Liu, H. T. Yu and M. D. Barkley, J. Am. Chem. Soc., 1996, 118, 9271–9278.

    Article  CAS  Google Scholar 

  57. H. T. Yu, M. A. Vela, F. R. Fronczek, M. L. McLaughlin and M. D. Barkley, J. Am. Chem. Soc., 1995, 117, 348–357.

    Article  CAS  Google Scholar 

  58. Y. Yamamoto and J. Tanaka, Bull. Chem. Soc. Jpn., 1972, 45, 1362–1372.

    Article  CAS  Google Scholar 

  59. B. Valeur and G. Weber, Photochem. Photobiol., 1977, 25, 441–444.

    Article  CAS  PubMed  Google Scholar 

  60. B. J. Harvey, E. Bell and L. Brancaleo, J. Phys. Chem. B, 2007, 111, 2610–2620.

    Article  CAS  PubMed  Google Scholar 

  61. A. H. A. Clayton and W. H. Sawyer, Biophys. J., 1999, 76, 3235–3242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. J. H. Xu, D. Toptygin, K. J. Graver, R. A. Albertini, R. S. Savtchenko, N. D. Meadow, S. Roseman, P. R. Callis, L. Brand and J. R. Knutson, J. Am. Chem. Soc., 2006, 128, 1214–1221.

    Article  CAS  PubMed  Google Scholar 

  63. G. Hazan, E. Haas and I. Z. Steinberg, Biochim. Biophys. Acta, 1976, 434, 144–153.

    Article  CAS  PubMed  Google Scholar 

  64. S. Kasai, T. Horie, T. Mizuma and S. Awazu, J. Pharm. Sci., 1987, 76, 387–392.

    Article  CAS  PubMed  Google Scholar 

  65. P. Wahl and J. C. Auchet, Biochim. Biophys. Acta, 1971, 285, 99–117.

    Article  Google Scholar 

  66. J. R. Lakowicz and I. Gryczynski, Biophys. Chem., 1992, 45, 1–6.

    Article  CAS  PubMed  Google Scholar 

  67. D. M. Davis, D. McLoskey, D. J. S. Birch, P. R. Gellert, R. S. Kittlety and R. M. Swart, Biophys. Chem., 1996, 60, 63–77.

    Article  CAS  PubMed  Google Scholar 

  68. K. Vos, A. Vanhoek, A. J. W. G. Visser, Eur. Biophys. J., 1987, 165, 55–63.

    CAS  Google Scholar 

  69. O. J. Rolinski, A. Martin and D. J. S. Birch, J. Biomed. Opt., 2007, 12, 034013.

    Article  PubMed  CAS  Google Scholar 

  70. P. Marzola and E. Gratton, J. Phys. Chem., 1991, 95, 9488–9495.

    Article  CAS  Google Scholar 

  71. M. K. Helms, C. E. Petersen, N. V. Bhagavan and D. M. Jameson, FEBS Lett., 1997, 408, 67–70.

    Article  CAS  PubMed  Google Scholar 

  72. N. Silva, E. Gratton and G. Mei, Comments Cell. Mol. Biophys., 1994, 8, 217–242.

    Google Scholar 

  73. G. Mei, A. Di Venere, F. De Matteis, A. Lenzi and N. Rosato, J. Fluoresc., 2001, 11, 319–333.

    Article  CAS  Google Scholar 

  74. J. B. A. Ross, C. J. Schmidt and L. Brand, Biochemistry, 1981, 20, 4369–4377.

    Article  CAS  PubMed  Google Scholar 

  75. M. R. Eftink and D. M. Jameson, Biochemistry, 1982, 21, 4443–4449.

    Article  CAS  PubMed  Google Scholar 

  76. S. T. Ferreira, L. Stella and E. Gratton, Biophys. J., 1994, 66, 1185–1196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. D. M. Rayner, D. T. Krajcarski and A. G. Szabo, Can. J. Chem., 1978, 56, 1238–1245.

    Article  CAS  Google Scholar 

  78. C. D. McGuinness, A. M. Macmillan, K. Sagoo, D. McLoskey and D. J. S. Birch, Appl. Phys. Lett., 2006, 89, 063901.

    Article  CAS  Google Scholar 

  79. J. P. Duneau, N. Garnier, G. Cremel, G. Nullans, P. Hubert, D. Genest, M. Vincent, J. Gallay and M. Genest, Biophys. Chem., 1998, 73, 109–119.

    Article  CAS  PubMed  Google Scholar 

  80. G. D. Fasman, Practical handbook of Biochemistry and Molecular Biology, CRC Press Inc, Boca Raton, FL, 1989.

    Google Scholar 

  81. R. F. Chen, Anal. Lett., 1967, 1, 35–42.

    Article  CAS  Google Scholar 

  82. B. D. Venetta, Rev. Sci. Instrum., 1959, 30, 450–457.

    Article  CAS  Google Scholar 

  83. L. Li, M. von Bergen, E. M. Mandelkow and E. Mandelkow, J. Biol. Chem., 2002, 277, 41390–400.

    Article  CAS  PubMed  Google Scholar 

  84. M. K. Helms, T. L. Hazlett, H. Mizuguchi, C. A. Hasemann, K. Uyeda and D. M. Jameson, Biochemistry, 1998, 37, 14057–14064.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Jameson.

Additional information

Edited by T. Gensch and C. Viappiani. This paper is derived from the lecture given at the X School of Pure and Applied Biophysics Time-resolved spectroscopic methods in biophysics (organized by the Italian Society of Pure and Applied Biophysics), held in Venice in January 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, J.A., Jameson, D.M. Time-resolved methods in biophysics. 8. Frequency domain fluorometry: applications to intrinsic protein fluorescence. Photochem Photobiol Sci 7, 1301–1312 (2008). https://doi.org/10.1039/b804450n

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b804450n

Navigation