Skip to main content
Log in

Radical cage effects: A method for measuring recombination efficiencies of secondary geminate radical cage pairs using pump-probe transient absorption methods

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A method is reported for measuring the recombination efficiency of secondary geminate radical cage pairs. The procedure involves measuring the recombination efficiency for primary geminate recombination (Fc1) using pump-probe laser methods and measuring the “apparent” (or net) recombination efficiency (FcP) for all geminate pairs (primary and secondary) using steady-state irradiation methods. A mathematical relationship between FcP, Fc1, and Fc2 (where Fc2 is the recombination efficiency for secondary geminate recombination) is derived and demonstrated using the photolysis reactions of the [(CpR)Mo(CO)3]2 molecules, where CpR = η5-C5H4CH3 and η5-C5H4(CH2)2C(O)NCH3(CH2)nCH3 (n = 3, 8, 13, 18). As an example of the results obtained using the new method, it was found that Fc1 = 0.43 and Fc2 = 0.68 for the molecule with CpR = η5-C5H4CH2CH2N(CH3)C(O)(CH2)18CH3. The value of Fc2 decreased as the side-chain on the Cp ring got shorter; Fc2 is equal to 0.0 for the molecules with n = 3 and for CpR = η5-C5H4CH3. It is hypothesized that a longer side-chain prevents facile diffusion of the radicals out of the secondary cage, whereas the smaller side-chains permit more facile diffusion apart of the radicals. A general conclusion is that the reactions of large radicals in particular may be especially impacted by secondary geminate cage recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Lorand, The Cage Effect, Prog. Inorg. Chem., 1972, 17, 207–325.

    CAS  Google Scholar 

  2. S. A. Rice, Comprehensive Chemical Kinetics, Elsevier, Amsterdam, 1985.

    Google Scholar 

  3. J. L. Male, B. E. Lindfors, K. J. Covert and D. R. Tyler, The Effect of Radical Size and Mass on the Cage Recombination Efficiency of Photochemically Generated Radical Cage Pairs, J. Am. Chem. Soc., 1998, 120, 13176–13186.

    Article  CAS  Google Scholar 

  4. P. Bosch, J. L. Mateo and J. Serrano, 1-Heptene, 3-heptenes and cumene as model compounds of SBS block copolymers. Study of their photoreactions in the presence of photoinitiators of polymerization, J. Photochem. Photobiol., A, 1997, 103, 177–184.

    Article  CAS  Google Scholar 

  5. J. B. L. De Kock, A. M. Van Herk and A. L. German, Bimolecular free-radical termination at low conversion, J. Macromol. Sci., Part C: Polym. Rev., 2001, C41, 199–252.

    Article  Google Scholar 

  6. H. Knoll, W. J. G. De Lange, H. Hennig, D. J. Stufkens and A. Oskam, Photochemical and thermal disproportionation of [(CO)4CoM(CO)3(LL)] (M = Mn, Re; LL = 2,2′-bipyridine, 2-pyridinecarboxaldehyde N-isopropylimine) complexes, J. Organomet. Chem., 1992, 430, 123–132.

    Article  CAS  Google Scholar 

  7. H. K. Van Dijk, J. Van der Haar, D. J. Stufkens and A. Oskam, Metal to ligand charge-transfer photochemistry of metal-metal-bonded complexes. 7. Photochemistry of (CO)4CoM(CO)3(bpy) (M = Mn, Re; bpy = 2,2′-bipyridine): photocatalytic disproportionation of the manganese complex in the presence of PR3, Inorg. Chem., 1989, 28, 75–81.

    Article  Google Scholar 

  8. W. B. Lott, A. M. Chagovetz and C. B. Grissom, Alkyl Radical Geometry Controls Geminate Cage Recombination in Alkylcobalamins, J. Am. Chem. Soc., 1995, 117, 12194–12201.

    Article  CAS  Google Scholar 

  9. A. G. Cole, L. M. Yoder, J. J. Shiang, N. A. Anderson, L. A. Walker, II, M. M. Banaszak Holl and R. J. Sension, Time-Resolved Spectroscopic Studies of B12 Coenzymes: A Comparison of the Primary Photolysis Mechanism in Methyl-, Ethyl-, n-Propyl-, and 5′-Deoxyadenosylcobalamin, J. Am. Chem. Soc., 2002, 124, 434–441.

    Article  CAS  PubMed  Google Scholar 

  10. L. M. Yoder, A. G. Cole, L. A. Walker, II and R. J. Sension, Time-resolved spectroscopic studies of B12 coenzymes: Influence of solvent on the photolysis of adenosylcobalamin, J. Phys. Chem. B, 2001, 105, 12180–12188.

    Article  CAS  Google Scholar 

  11. T. G. Grogan, N. Bag, T. G. Traylor and D. Magde, Picosecond Reaction of Picket Fence Heme with O2 and CO: Geminate Recombination in the Solvent Cage, J. Phys. Chem., 1994, 98, 13791–13796.

    Article  CAS  Google Scholar 

  12. E. E. Scott, Q. H. Gibson and J. S. Olson, Mapping the pathways for O2 entry into and exit from myoglobin, J. Biol. Chem., 2001, 276, 5177–5188.

    Article  CAS  PubMed  Google Scholar 

  13. N. J. Turro, X. -G. Lei, W. Li, Z. Liu, A. McDermott, M. F. Ottaviani and L. Abrams, Photochemical and Magnetic Resonance Investigations of the Supramolecular Structure and Dynamics of Molecules and Reactive Radicals on the External and Internal Surface of MFI Zeolites, J. Am. Chem. Soc., 2000, 122, 11649–11659.

    Article  CAS  Google Scholar 

  14. J. Sivaguru, A. Natarajan, L. S. Kaanumalle, J. Shailaja, S. Uppili, A. Joy and V. Ramamurthy, Asymmetric Photoreactions within Zeolites: Role of Confinement and Alkali Metal Ions, Acc. Chem. Res., 2003, 36, 509–521.

    Article  CAS  PubMed  Google Scholar 

  15. C. F. Melius and M. C. Piqueras, Initial reaction steps in the condensed-phase decomposition of propellants, Proc. Combust. Inst., 2002, 29, 2863–2871.

    Article  CAS  Google Scholar 

  16. J. Xu and R. G. Weiss, Reaction cavities of liquid and solid phases of a long n-alkane, n-nonadecane, as probed by the regio- and stereo-chemical fates of two singlet radical pairs, Photochem. Photobiol. Sci., 2005, 4, 210–215.

    Article  CAS  PubMed  Google Scholar 

  17. S. Goldstein and G. Czapski, Viscosity Effects on the Reaction of Peroxynitrite with CO2: Evidence for Radical Formation in a Solvent Cage, J. Am. Chem. Soc., 1999, 121, 2444–2447.

    Article  CAS  Google Scholar 

  18. J. M. Tanko, N. K. Suleman and B. Fletcher, Viscosity-Dependent Behavior of Geminate Caged-Pairs in Supercritical Fluid Solvent, J. Am. Chem. Soc., 1996, 118, 11958–11959.

    Article  CAS  Google Scholar 

  19. J. Guillet, Photochemistry and molecular motion in solid amorphous polymers, Adv. Photochem., 1988, 14, 91–133.

    CAS  Google Scholar 

  20. M. Okamoto and F. Tanaka, Solvent and Pressure Effects on Quenching by Oxygen of 9,10-Dimethylanthracene Fluorescence in Liquid n-Alkanes: A Study on Solvent Cage Effects, J. Phys. Chem. A, 2006, 110, 10601–10606.

    Article  CAS  PubMed  Google Scholar 

  21. T. Koenig and R. G. Finke, The cage effect and apparent activation parameters for bond homolysis, J. Am. Chem. Soc., 1988, 110, 2657–2658.

    Article  CAS  Google Scholar 

  22. J. Farias de Lima, A. K. Nakano and N. Y. M. Iha, Solvent cage effects on the ligand field photochemistry of the cyanoferrate(II) complexes, Inorg. Chem., 1999, 38, 403–405.

    Article  CAS  Google Scholar 

  23. N. J. Turro and B. Kraeutler, Magnetic field and magnetic isotope effects in organic photochemical reactions. A novel probe of reaction mechanisms and a method for enrichment of magnetic isotopes, Acc. Chem. Res., 1980, 13, 369–377.

    Article  CAS  Google Scholar 

  24. R. Kaptein, Chemically induced dynamic nuclear polarization: theory and applications in mechanistic chemistry, Advances in Free-Radical Chemistry (London), 1975, 5, 319–380.

    CAS  Google Scholar 

  25. A. Rembaum and M. Szwarc, O-O bond dissociation energies in propionyl and butyryl peroxides, J. Chem. Phys., 1955, 23, 909–913.

    Article  CAS  Google Scholar 

  26. D. D. Tanner, H. Oumar-Mahamat, C. P. Meintzer, E. C. Tsai, T. T. Lu and D. Yang, Viscosity-dependent cage reactions. Multiple substitutions in radical-chain chlorinations, J. Am. Chem. Soc., 1991, 113, 5397–5402.

    Article  CAS  Google Scholar 

  27. R. M. Noyes, Tests of solution models by quantum yields for dissociation, Z. Elektrochem. Angew. Phys. Chem., 1960, 64, 153–156.

    CAS  Google Scholar 

  28. K. Tomooka, H. Yamamoto and T. Nakai, Stereoselective synthesis of highly functionalized C-glycosides based on acetal [1,2] and [1,4] Wittig rearrangements, Angew. Chem., Int. Ed. Engl., 2000, 39, 4500–4502.

    Article  CAS  Google Scholar 

  29. C. J. Jenks, A. Paul, L. A. Smoliar and B. E. Bent, Effects of surface defects and coadsorbed iodine on the chemistry of alkyl groups on copper surfaces: evidence for a cage effect, J. Phys. Chem., 1994, 98, 572–578.

    Article  CAS  Google Scholar 

  30. A. C. Buchanan, III, P. F. Britt and K. B. Thomas, Radical Chemistry under Diffusional Constraints: Impact of Spacer Molecules on the Thermolysis of Surface-Immobilized Bibenzyl, Energy Fuels, 1998, 12, 649–659.

    Article  CAS  Google Scholar 

  31. A. Kanaev, L. Museur, F. Edery, T. Laarmann and T. Moller, Cage effect for the photodissociation of H2O molecules in argon clusters embedded inside neon clusters, J. Chem. Phys., 2002, 117, 9423–9429.

    Article  CAS  Google Scholar 

  32. V. Vorsa, S. Nandi, P. J. Campagnola, M. Larsson and W. C. Lineberger, Recombination dynamics of photodissociated I2 in size selected Ar and CO2 clusters, J. Chem. Phys., 1997, 106, 1402–1410.

    Article  CAS  Google Scholar 

  33. U. Bhattacharjee, C. A. Chesta and R. G. Weiss, Temperature-dependent cage effects from triplet radical pairs generated upon irradiation of 1-(4-methylphenyl)-3-phenyl-2-propanone in polyethylene films, Photochem. Photobiol. Sci., 2004, 3, 287–295.

    Article  CAS  PubMed  Google Scholar 

  34. J. Franck and E. Rabinowitsch, Free radicals and the photochemistry of solutions, Trans. Faraday Soc., 1934, 30, 120–131.

    Article  CAS  Google Scholar 

  35. E. Schutte, T. J. R. Weakley and D. R. Tyler, Radical Cage Effects in the Photochemical Degradation of Polymers: Effect of Radical Size and Mass on the Cage Recombination Efficiency of Radical Cage Pairs Generated Photochemically from the (CpCH2CH2N(CH3)C(O)(CH2nCH32Mo2(CO)6 (n = 3, 8, 18) Complexes, J. Am. Chem. Soc., 2003, 125, 10319–10326.

    Article  CAS  PubMed  Google Scholar 

  36. J. D. Harris, A. B. Oelkers and D. R. Tyler, The Solvent Cage Effect: Is There a Spin Barrier to Recombination of Transition Metal Radicals?, J. Am. Chem. Soc., 2007, 129, 6255–6262.

    Article  CAS  PubMed  Google Scholar 

  37. J. D. Harris, A. B. Oelkers and D. R. Tyler, Microviscosity and wavelength effects on radical cage pair recombination, J. Organomet. Chem., 2007, 692, 3261–3266.

    Article  CAS  Google Scholar 

  38. N. Nodelman and J. C. Martin, Solvent cage effect in the photolysis of azomethane in aqueous alcohols and other media: a semiempirical correlation with macroscopic solvent parameters, J. Am. Chem. Soc., 1976, 98, 6597–6608.

    Article  CAS  Google Scholar 

  39. A. B. Oelkers, L. F. Scatena and D. R. Tyler, Femtosecond pump-probe transient absorption study of the photolysis of [Cp′Mo(CO)3]2 (Cp′ = η5-C5H4CH3): Role of translational and totational diffusion in the radical cage effect, J. Phys. Chem. A, 2007, 111, 5353–5360.

    Article  CAS  PubMed  Google Scholar 

  40. D. A. Braden, E. E. Parrack and D. R. Tyler, Photochemical studies as a function of solvent viscosity. A new photochemical pathway in the reaction of (η5-C5H4Me)2Mo2(CO)6 with CCl4, Photochem. Photobiol. Sci., 2002, 1, 418–420.

    Article  CAS  PubMed  Google Scholar 

  41. R. M. Noyes, Kinetics of competitive processes when reactive fragments are produced in pairs, J. Am. Chem. Soc., 1955, 77, 2042–2045.

    Article  CAS  Google Scholar 

  42. T. Koenig and H. Fischer, Cage effects, Free Radicals, 1973, 1, 157–189.

    CAS  Google Scholar 

  43. A. R. Manning, P. Hackett, R. Birdwhistell and P. Soye, Hexacarbonylbis(h5-cyclopentadienyl)dichromium, molybdenum, and tungsten and their analogs, M25-C5H4R)2(CO)6 (M = Cr, Mo, and W; R = H, Me or PhCH2), Inorg. Synth., 1990, 28, 148–150.

    CAS  Google Scholar 

  44. D. A. Braden, E. E. Parrack and D. R. Tyler, Solvent cage effects. I. Effect, of radical mass and size on radical cage pair recombination efficiency. II. Is, geminate recombination of polar radicals sensitive to solvent polarity?, Coord. Chem. Rev., 2001, 211, 279–294.

    Article  CAS  Google Scholar 

  45. J. L. Male, B. E. Lindfors, K. J. Covert and D. R. Tyler, Cage Effects in the Photochemical Degradation of Polymers. Studies of Model Complexes with Different Chain Lengths, Macromolecules, 1997, 30, 6404–6406.

    Article  CAS  Google Scholar 

  46. A. B. Oelkers, E. J. Schutte and D. R. Tyler, Solvent Cage Effects: The Influence of Radical Mass and Volume on the Recombination Dynamics of Radical Cage Pairs Generated by Photolysis of [CpCH2CH2N(CH3)C(O)(CH2nCH3Mo(CO)3]2 (n = 3, 8, 13, 18) (Cp = η5-C5H4) Complexes, Photochem. Photobiol. Sci., 2008, 7, 228–234.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Tyler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oelkers, A.B., Tyler, D.R. Radical cage effects: A method for measuring recombination efficiencies of secondary geminate radical cage pairs using pump-probe transient absorption methods. Photochem Photobiol Sci 7, 1386–1390 (2008). https://doi.org/10.1039/b804399j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b804399j

Navigation