Skip to main content
Log in

Triplet and ground state potential energy surfaces of 1,4-diphenyl-1,3-butadiene: theory and experiment

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Relative energies of the ground state isomers of 1,4-diphenyl-1,3-butadiene (DPB) are determined from the temperature dependence of equilibrium isomer compositions obtained with the use of diphenyl diselenide as catalyst. Temperature and concentration effects on photostationary states and isomerization quantum yields with biacetyl or fluorenone as triplet sensitizers with or without the presence of O2, lead to significant modification of the proposed DPB triplet potential energy surface. Quantum yields for ct-DPB formation from tt-DPB increase with [tt-DPB] revealing a quantum chain process in the tt ct direction, as had been observed for the ct tt direction, and suggesting an energy minimum at the 3ct* geometry. They confirm the presence of planar and twisted isomeric triplets in equilibrium (K), with energy transfer from planar or quasi-planar geometries (quantum chain events from tt and ct triplets) and unimolecular decay (kd) from twisted geometries. Starting from cc-DPB, øcc-tt increases with increasing [cc-DPB] whereas øcc-ct is relatively insensitive to concentration changes. The concentration and temperature dependencies of the decay rate constants of DPB triplets in cyclohexane are consistent with the mechanism deduced from the photoisomerization quantum yields. The experimental ΔH between 3tt-DPB* and 3tp-DPB*, 2.7 kcal mol−1, is compared with the calculated energy difference [DFT with B3LYP/6-31+G(d,p) basis set]. Use of the calculated ΔS = 4.04 eu between the two triplets gives kd = (2.4–6.4) × 107 s−1, close to 1.70 × 107 s−1, the value for twisted stilbene triplet decay. Experimental and calculated relative energies of DPB isomers on the ground and triplet state surfaces agree and theory is relied upon to deduce structural characteristics of the equilibrated conformers in the DPB triplet state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes and references

  1. S. K. Chattopadhyay, P. K. Das and G. L. Hug, Photoprocesses in Diphenylpolyenes. Oxygen and Heavy-Atom Enhancement of Triplet Yields, J. Am. Chem. Soc., 1982, 104, 4507–4514.

    Article  CAS  Google Scholar 

  2. S. K. Chattopad-hyay, C. V. Kumar and P. K. Das, Role of geometric distortion in the quenching behavior of all-trans-1,4-diphenyl-1,3-butadiene triplet, J. Photochem., 1984, 26, 39–47.

    Article  CAS  Google Scholar 

  3. S. K. Chattopadhyay, C. V. Kumar and P. K. Das, Photoprocesses in Diphenylpolyenes. Efficiency of Singlet Oxygen Generation from Oxygen Quenching of Polyene Singlets and Triplets, J. Phys. Chem., 1985, 89, 670–673.

    Article  CAS  Google Scholar 

  4. W. A. Yee, S. J. Hug and D. S. Kliger, Direct and sensitized photoi-somerization of 1,4-diphenylbutadienes, J. Am. Chem. Soc., 1988, 110, 2164–2169.

    Article  CAS  Google Scholar 

  5. L. R. Eastman Jr., B. M. Zarnegar, J. M. Butler and D. G. Whftten, An Unusual Case of Selectivity in a Photochemical Reaction. Photoi-somerization of Unsymmetrical 1,3-Dienes, J. Am. Chem. Soc., 1974, 96, 2281–2283.

    Article  CAS  Google Scholar 

  6. V. Ramamurthy, J. V. Caspar, D. R. Corbin, B. D. Schyler and A. H. Maki, Triplet-state photophysics of naphthalene and a,x-diphenylpolyenes included in heavy-cation-exchanged zeolites, J. Phys. Chem., 1990, 54, 3391–3392.

    Article  Google Scholar 

  7. V. Ramamurthy, J. V. Caspar, D. F. Eaton, E. W. Kuo and D. R. Corbin, Heavy-atom-induced phosphorescence of aromatics and olefins included within zeolites, J. Am. Chem. Soc., 1992, 114, 3882–3892.

    Article  CAS  Google Scholar 

  8. V. Weiss, H. Port and H. C. Wolf, Excitonic and molecular properties of the triplet T+1+-state in diphenylpolyene single crystals, Mol. Cryst. Liq. Cryst., 1997, 308, 147–148.

    Article  CAS  Google Scholar 

  9. J. Saltiel, G.-E. Khalil and K. Schanze, trans-Stilbene Phosphorescence, Chem. Phys. Lett., 1980, 70, 233–235

    Article  CAS  Google Scholar 

  10. H. Görner, Phosphorescence of trans-stilbene, trans-stilbene derivatives and stilbene-like molecules at 77 K, J. Phys. Chem., 1989, 93, 1826–1832.

    Article  Google Scholar 

  11. G. Heinrich, G. Holzer, H. Blume and D. Schulte-Frohlinde, Triplet lifetime of diphenylpolyenes and deuterated stilbenes in frozen solution at 77 K, Z. Naturforsch, B, 1970, 25, 496.

    Article  CAS  Google Scholar 

  12. J. Saltiel, J. T. D’Agostino, W. G. Herkstroeter, G. Saint-Ruf and N. P. Buu-Höi, Deuterium Isotope Effects on the T1 to S0 Radiationless Decay Rate in Stilbene, J. Am. Chem. Soc., 1973, 95, 2543–2549.

    Article  CAS  Google Scholar 

  13. J. Saltiel and B. Thomas, Nonvertical deactivation and the lifetime and geometry of stilbene triplets in solution, J. Am. Chem. Soc, 1974, 96, 5660–5661.

    Article  CAS  Google Scholar 

  14. J. Saltiel, A. D. Rousseau and B. Thomas, The energetics of twisting in the lowest stilbene triplet state, J. Am. Chem. Soc., 1983, 105, 7631–7637.

    Article  CAS  Google Scholar 

  15. J. Saltiel and R. F. Klima, a-Methylstilbene and the duality of mechanism in the quenching of stilbene triplets by molecular oxygen, Photochem. Photobiol., 2006, 82, 38–42.

    Article  CAS  PubMed  Google Scholar 

  16. H. Görner and D. Schulte-Frohlinde, Observation of the triplet state of stilbene in fluid solution. Determination of the equilibrium constant (3t*±53p*) and of the rate constant for intersystem crossing (3p* 1p), J. Phys. Chem., 1981, 85, 1835–1841.

    Article  Google Scholar 

  17. J. Saltiel, S. Wang, D.-H. Ko and D. A. Gormin, Cis-trans photoisomerization of the 1,6-diphenyl-1,3,5-hexatrienes in the triplet state. The quantum chain mechanism and the structure of the triplet state, J. Phys. Chem. A, 1998, 102, 5383–5392.

    Article  CAS  Google Scholar 

  18. J. Saltiel, J. M. Crowder and S. Wang, Mapping the potential energy surfaces of the 1,6-diphenyl-1,3,5-hexatriene ground and triplet states, J. Am. Chem. Soc., 1999, 121, 895–902.

    Article  CAS  Google Scholar 

  19. W G. Herkstroeter, A. A. Lamola and G. S. Hammond, Values of triplet excitation energies of selected sensitizers, J. Am. Chem. Soc., 1964, 86, 4537–4540.

    Article  CAS  Google Scholar 

  20. J. H. Pickard, B. Wille and L. Zechmeister, A comparative study of the three stereoisomeric 1,4-diphenylbutadienes, J. Am. Chem. Soc., 1944, 70, 1938–1944.

    Article  Google Scholar 

  21. J. Saltiel, A. Marinari, D. W-L. Chang, J. C. Mitchener and E. D. Megarity, Trans-Cis Photoisomerization of the Stilbenes and a Reexamination of the Positional Dependence of the Heavy-Atom Effect, J. Am. Chem. Soc, 1979.101, 2982–2996.

    Google Scholar 

  22. R. A. Caldwell and R. P. Gajewski, Fluorenone photosensitized isomerization of trans-stilbene. Inefficiencies both in intersystem crossing and in triplet excitation transfer, J. Am. Chem. Soc, 1971, 93, 532–534

    Article  CAS  Google Scholar 

  23. D. Valentine Jr. and G. S. Hammond, Energy wastage in photosensitized isomerizations of the stilbenes, J. Am. Chem. Soc, 1972, 94, 3449–3454.

    Article  CAS  Google Scholar 

  24. J. Saltiel, S. Ganapathy and C. Werking, The DH for thermal trans/cis stilbene isomerization. Do S0 and T1 potential energy curves cross?, J. Phys. Chem., 1987, 91, 2755–2758.

    Article  CAS  Google Scholar 

  25. M. J. Frisch, G. W Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W Gill, B. G. Johnson, W Chen, M. W Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle and J. A. Pople, GAUSSIAN98 (Revision A.7), Gaussian, Inc., Pittsburgh, PA, 1998.

    Google Scholar 

  26. H. B. Schlegel, Optimization of equilibrium geometries and transition structures, J. Comput. Chem., 1982, 3, 214–218

    Article  CAS  Google Scholar 

  27. H. B. Schlegel, Optimization of equilibrium geometries and transition structures, Adv. Chem. Phys., 1987 67, 249–286

    CAS  Google Scholar 

  28. H. B. Schlegel, in Modern Electronic Structure Theory, ed. D. R. Yarkony, World Scientific, Singapore, 1995, P. 459.

  29. A. D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, 1988, 38, 3098–3100.

    Article  CAS  Google Scholar 

  30. C. Lee, W Yang and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B, 1988, 37, 785–789

    Article  CAS  Google Scholar 

  31. A. D. Becke, Density-functional thermochemistry. III. The, role of exact exchange, J. Chem. Phys., 1993, 98, 5648–5652.

    Article  CAS  Google Scholar 

  32. P. J. Stevens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields, J. Phys. Chem., 1994, 98, 11623–116237.

    Article  Google Scholar 

  33. K. Lunde and L. Zechmeister, Cis-trans isomeric 1,6-diphenylhexatrienes, J. Am. Chem. Soc, 1954, 76, 2308–2313.

    Article  CAS  Google Scholar 

  34. E. N. Ushakov, I. K. Lednev and M. V. ( Alfimov, Photosensitized catalytic isomerization of stilbene, Dokl. Acad. Nauk., 1990, 313, 903–907.

    CAS  Google Scholar 

  35. F. D. Lewis, B. A. Yoon, T. Arai, T. Iwasaki and K. Tokumaru, Molecular Structure and Photochemistry of (E)- and (Z)-2-(2-(2-Pyridyl)ethenyl)indole. A Case of Hydrogen Bond Dependent One-Way Photoisomerization, J. Am. Chem. Soc, 1995, 117, 3029–3036.

    Article  CAS  Google Scholar 

  36. E. L. Eliel and J. J. Engelsman, The heats of combustion of gaseous cyclotetradecane and trans-stilbene - a tale of long-standing confusion, J. Chem. Educ, 1996, 73, 903–905.

    Article  CAS  Google Scholar 

  37. W. A. Yee, Private communication.

  38. H. L. Backstrom and K. Sandros, Transfer of triplet-state energy in fluid solutions I. Sensitized, Phosphorescence and its application to the determination of triplet-state lifetimes, Acta Chem. Scand., 1960, 14, 48–62.

    Article  CAS  Google Scholar 

  39. L. J. Andrews, A. Deroulede and H. Lischitz, Photophysical processes in fluorenone, J. Phys. Chem., 1978, 82, 2304–2309.

    Article  CAS  Google Scholar 

  40. J. Saltiel and B. W. Atwater, Spin-Statistical Factors on Diffusion-Controlled Reactions, Adv. Photochem., 1988, 14, 1–90.

    CAS  Google Scholar 

  41. J. Saltiel, O. Dmitrenko, W. Reischl and R. D. Bach, The Triplet Potential Energy Surface of s-trans-2,4-Hexadiene. A Comparison of Theory and Experiment, J. Phys. Chem. A, 2001, 105, 3934–3939.

    Article  CAS  Google Scholar 

  42. M. Brink, H. Jonson and C.-H. Ottosson, Triplet state Z/E-photoisomerizations of polyenes: A comparison of ab initio and density functional methods, J. Phys. Chem. A, 1998, 102, 3934–3939.

    Article  Google Scholar 

  43. J. Saltiel, T. S. R. Krishna, A. M. Turek and R. J. Clark, Photoisomer-ization of cis,cis-1,4-Diphenyl-1,3-butadiene in Glassy Media at 77 K: The Bicycle-Pedal Mechanism, J. Chem. Soc. Chem. Commun., 2006, 1506–1508.

    Google Scholar 

  44. W. von E. Doering, I. Birladeanu, K. Sarma, J. H. Teles, F.-G. Klärner and J.-S. Gehrke, Perturbation of the Degenerate, Concerted Cope Rearrangement by Two Phenyl Groups in “Active” Positions of (E)-1,4-Diphenylhexa-1,5-diene. Acceleration by High Pressure as Criterion of Cyclic Transition States, J. Am. Chem. Soc., 1994, 116, 4289–4297.

    Article  CAS  Google Scholar 

  45. R. A. Caldwell, L. Carlacci, C. E. J. Doubleday, T. R. Furlani, H. F. King and J. W. J. McIver, Viable geometries for T1-S0 ISC in alkene triplets, J. Am. Chem. Soc., 1988, 110, 6901–6903.

    Article  CAS  Google Scholar 

  46. D. L. Unett and R. A. Caldwell, The triplet state of alkenes: Structure, dynamics, energetics and chemistry, Res. Chem. Interm., 1995, 21, 665–709.

    Article  CAS  Google Scholar 

  47. R. Dooley, K. Milfeld, C. Guiang, S. Pamidighantam and G. Allen, From proposal to production: Lessons learned developing the computational chemistry grid cyberinfrastructure, J. Grid Computing, 2006, 4, 195–208.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Saltiel.

Additional information

This paper was published as part of the themed issue in honour of Jakob Wirz.

Electronic supplementary information (ESI) available: Cartesian coordinates, drawings, and total energies of optimized structures and transition states in S0 and T1.See DOI: 10.1039/b801075g

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saltiel, J., Dmitrenko, O., Pillai, Z.S. et al. Triplet and ground state potential energy surfaces of 1,4-diphenyl-1,3-butadiene: theory and experiment. Photochem Photobiol Sci 7, 566–577 (2008). https://doi.org/10.1039/b801075g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b801075g

Navigation