Skip to main content

Advertisement

Log in

One- and two-photon induced QD-based energy transfer and the influence of multiple QD excitations

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Due to the increased use of quantum dots (QDs) in diverse laser microscopies, it is interesting to study the excitation pump power and excitation wavelength dependence of QD-based energy transfer (ET) processes. The ET in QD conjugates with phthalocyanines (Pcs) was studied with femtosecond time-resolved pump-probe spectroscopy upon one- and two-photon excitation. At the used excitation wavelengths only the QDs are excited and become the energy donors. Due to the matched spectral overlap of QD photoluminescence and Pc absorption, the ET occurs on a picosecond time scale. The ET process shows strong pump power dependence whereby an increase in excitation power results in multiple QD excitations and in shorter excited state lifetimes on the QDs due to Auger relaxation. As a result, high excitation pump power leads also to an accelerated ET to the acceptor molecules from the initially multiply excited states of the QDs. Excited state quenching studies as function of pump power suggest that ET occurs mainly from the lowest one-exciton state (n = 1) and only to a minor extent from the multiply excited states (n > 1). For the short-lived, multiply excited states the ET competes inefficiently with Auger recombinations and energy transfer efficiencies of øET|n=1> ≈ 20%, øET|n=2> ≈ 7%, øET|n=3> ≤ 2% were obtained. Also after two-photon excitation the ET efficiency is highest from the one-exciton state. The experimentally determined ET efficiencies were compared with theoretical ET efficiencies upon multiple excitations. In both cases the ET efficiency decreases with the increase in excitation pump power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Efros and A. Efros, Sov. Phys. Semicond., 1982, 16, 772.

    Google Scholar 

  2. A. Alivisatos, Semiconductor clusters, nanocrystals, and Quantum dots, Science, 1996, 271, 933–937

    Article  CAS  Google Scholar 

  3. V. Klimov, Ch. J. Schwarz, D. W. McBranch, C. A. Leatherdale and M. Bawendi, Ultrafast dynamics of inter- and intraband transitions in semiconductor nanocrystals: implications for quantum-dot laser, Phys. Rev. B, 1999, 60, 2177–2180.

    Article  Google Scholar 

  4. V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale and M. G. Bawendi, Quantization of multiparticle Auger rates in semiconductor quantum dots, Science, 2000, 287, 1011–13.

    Article  CAS  PubMed  Google Scholar 

  5. V. I. Klimov, Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals, J. Phys. Chem. B, 2000, 104, 6112–6123.

    Article  CAS  Google Scholar 

  6. A. C. S. Samia, X. Chen and C. Burda, Semiconductor quantum dots for photodynamic therapy, J. Am. Chem. Soc., 2003, 125, 15736–15737.

    Article  CAS  PubMed  Google Scholar 

  7. S. Dayal, R. Krolicki, Y. Lou, X. Qiu, J. C. Berlin, M. E. Kenney and C. Burda, Femtosecond time-resolved energy transfer from CdSe nanoparticles to phthalocyanines, App. Phys. B, 2006, 84, 309–315

    Article  CAS  Google Scholar 

  8. S. Dayal, Y. B. Lou, A. C. S. Samia, J. C. Berlin, M. E. Kenney and C. Burda, Observation of non-Förster-type energy-transfer behavior in quantum dots-phthalocyanine conjugates, J. Am. Chem. Soc., 2006, 128, 13974–13975.

    Article  CAS  PubMed  Google Scholar 

  9. S. Dayal and C. Burda, Surface effects on quantum dot-based energy transfer, J. Am. Chem. Soc., 129, 7977–7981.

  10. S. Dayal, J. Li, Y.-S. Li, H. Wu, A. C. S. Samia, M. E. Kenney and C. Burda, Effect of the functionalization of the axial phthalocyanine ligands on the energy transfer in QD-based donor-acceptor pairs, Photochem. Photobiol., 2008, 84, 243–249.

    CAS  PubMed  Google Scholar 

  11. S. A. Blanton, A. Dehestani, P. C. Lin and P. Guyot-Sionnest, Photoluminescence of single semiconductor nanocrystallites by two-photon excitation spectroscopy, Chem. Phys. Lett., 1994, 229, 317–322

    Article  CAS  Google Scholar 

  12. M. E. Schmidt, S. A. Blanton, M. A. Hines and P. Guyot-Sionnest, Size-dependent two-photon excitation spectroscopy of CdSe nanocrystals, Phys. Rev. B, 1996, 53, 12629–12632.

    Article  CAS  Google Scholar 

  13. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise and W. W. Webb, Water-soluble quantum dots for multiphoton fluorescence imaging in vivo, Science, 2003, 300, 1434–1436.

    Article  CAS  PubMed  Google Scholar 

  14. S.-C. Pu, M.-J. Yang, C.-C. Hsu, C.-W. Lai, C.-C. Hsieh, S. H. Lin, Y.-M. Cheng and P.-T. Chou, The empirical correlation between size and two-photon absorption cross section of CdSe and CdTe quantum dots, Small, 2006, 2, 1308–1313.

    Article  CAS  PubMed  Google Scholar 

  15. S. Dayal and C. Burda, J. Am. Chem. Soc., 2008, 130, 2890–2891.

    Article  CAS  PubMed  Google Scholar 

  16. Z. A. Peng and X. G. Peng, Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor, J. Am. Chem. Soc., 2001, 123, 183–184.

    Article  CAS  PubMed  Google Scholar 

  17. W. W. Yu, L. Qu, W. Guo and X. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals, Chem. Mater., 2003, 15, 2854–2860.

    Article  CAS  Google Scholar 

  18. Y. Lou, X. Chen, A. C. S. Samia and C. Burda, Femtosecond spectroscopic investigation of the carrier lifetimes in digenite quantum dots and discrimination of the electron and hole dynamics via ultrafast interfacial electron transfer, J. Phys. Chem. B, 2003, 107, 12431–12437.

    Article  CAS  Google Scholar 

  19. W. Denk, J. H. Strickler and W. W. Webb, Two-photon laser scanning fluorescence microscopy, Science, 1990, 248, 73–76.

    Article  CAS  PubMed  Google Scholar 

  20. T. Förster, Intermolecular energy migration and fluorescence, Ann. Phys., 1948, 2, 55–75.

    Article  Google Scholar 

  21. S. Latt, H. T. Cheung and E. R. Blout, Energy transfer. A system with relatively fixed donor-acceptor separation, J. Am. Chem. Soc., 1965, 87, 995–1003

    Article  CAS  PubMed  Google Scholar 

  22. L. Stryer and R. P. Haugland, Energy transfer. A spectroscopic ruler, Proc. Natl. Acad. Sci. USA, 1967, 58, 719–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. H. Bucher, K. H. Drexhage, M. Fleck, H. Kuhn, D. Mobius, F. P. Schafer, J. Sondermann, W. Sperling, P. Tillmann and J. Wiegand, Mol. Cryst., 1967, 2, 199–230

    Article  Google Scholar 

  24. I. Z. Steinberg, Long-range nonradiative transfer of electronic excitation energy in proteins and polypeptides, Ann. Rev. Biochem., 1971, 40, 83–114

    Article  CAS  PubMed  Google Scholar 

  25. L. Stryer, Fluorescence energy transfer as a spectroscopic ruler, Ann. Rev. Biochem., 1978, 47, 819–846.

    Article  CAS  PubMed  Google Scholar 

  26. J. R. Lakowicz, I. Gryczynski, G. Piszczek and C. J. Murphy, Emission spectral properties of cadmium sulfide nanoparticles with multiphoton excitation, J. Phys. Chem. B, 2002, 106, 5365–5370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. B. Ullrich, S. Yano, R. Schroeder and H. Sakai, Analysis of single- and two-photon-excited green emission spectra of thin-film cadmium sulfide, J. App. Phys., 2003, 93, 1914–1917

    Article  CAS  Google Scholar 

  28. C.-T. Ting, C.-Y. Chen, C.-W. Lai, W.-H. Liu, S.-C. Pu, P.-T. Chou, Y.-H. Chou and H.-T. Chiu, Syntheses and photophysical properties of type-II CdSe/ZnTe/ZnS (core/shell/shell) quantum dots, J. Mater. Chem., 2005, 15, 3409–3414

    Article  Google Scholar 

  29. Z.-H. H ao, H.-M. Gong, J.-B. Han, Y.-Y. Zhai and Q.-Q. Wang, One- and two-photon excited fluorescence of CdSe and CdSe/ZnS quantum dots in n-hexane, Chin. Phys. Lett., 2006, 23, 2859–2862

    Article  CAS  Google Scholar 

  30. K.-T. Yong, J. Qian, I. Roy, H. H. Lee, E. J. Bergey, K. M. Tramposch, S. He, M. T. Swihart, A. Maitra and P. N. Prasad, Quantum rod bioconjugates as targeted probes for confocal and two-photon fluorescence imaging of cancer cells, Nano Lett., 2007, 7, 761–765

    Article  CAS  PubMed  Google Scholar 

  31. A. R. Clapp, T. Pons, I. L. Medintz, J. B. Delehanty, J. S. Melinger, T. Tiefenbrum, P. E. Dawson, B. R. Fisher, B. O’Rourke and H. Mattoussi, Two-photon excitation of quantum-dot-based fluorescence resonance energy transfer and its applications, Adv. Mater., 2007, 19, 1921–1926.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper was published as part of the themed issue in honour of Jakob Wirz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dayal, S., Burda, C. One- and two-photon induced QD-based energy transfer and the influence of multiple QD excitations. Photochem Photobiol Sci 7, 605–613 (2008). https://doi.org/10.1039/b800040a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b800040a

Navigation