Skip to main content
Log in

Chlorophyll fluorescence emission spectrum inside a leaf

  • Technical Note
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Chlorophyll a fluorescence can be used as an early stress indicator. Fluorescence is also connected to photosynthesis so it can be proposed for global monitoring of vegetation status from a satellite platform. Nevertheless, the correct interpretation of fluorescence requires accurate physical models. The spectral shape of the leaf fluorescence free of any re-absorption effect plays a key role in the models and is difficult to measure. We present a vegetation fluorescence emission spectrum free of re-absorption based on a combination of measurements and modelling. The suggested spectrum takes into account the photosystem I and II spectra and their relative contribution to fluorescence. This emission spectrum is applicable to describe vegetation fluorescence in biospectroscopy and remote sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. H. Krause, E. Weis, Chlorophyll fluorescence and photosynthesis: the basis, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1991, 42, 313–349.

    Article  CAS  Google Scholar 

  2. A. J. Govindjee, Sixty-three years since Kautsky chlorophyll a fluorescence, Aust. J. Plant Physiol., 1995, 22, 131–160.

    CAS  Google Scholar 

  3. M. Davidson, M. Berger, I. Moya, J. Moreno, T. Laurila, M.-P. Stoll, J. Miller, Mapping photosynthesis from space-a new vegetation-fluorescence technique, ESA Bull., 2003, 116, 34–37.

    Google Scholar 

  4. A. J. Durkin, S. Jaikumar, N. Ramanujam, R. R. Richards-Kortum, Relation between fluorescence spectra of dilute and turbid samples, Appl. Opt., 1994, 33, 414–423.

    Article  PubMed  CAS  Google Scholar 

  5. F. Terjung, Reabsorption of chlorophyll fluorescence and its effects on the spectral distribution and the picosecond decay of higher plant leaves, Z. Naturforsc., C, 1998, 53, 924–926.

    Article  CAS  Google Scholar 

  6. N. Subhash, C. N. Mohanan, Curve-fit analysis of chlorophyll fluorescence spectra: Application to nutrient stress detection in sunflower, Remote Sensing Environ., 1997, 30, 347–356.

    Article  Google Scholar 

  7. P. J. Zarco-Tejada, J. R. Miller, G. H. Mohammed, T. L. Noland, Chlorophyll fluorescence effects on vegetation apparent reflectance: I. Leaf-level measurements and model simulation, Remote Sensing Environ.L, 2000, 74, 582–595.

    Article  Google Scholar 

  8. S. W. Maier, Modeling the Radiative Transfer in Leaves in the 300 nm to 2.5 µm Wavelength Region taking into Consideration Chlorophyll Fluorescence - The Leaf Model SLOPE, PhD Thesis, Technische Universität München, München, 2000, 124 pp.

    Google Scholar 

  9. L. A. Corp, E. M. Middleton, J. E. McMurtrey, P. K. E. Campbell, L. M. Butcher, Fluorescence sensing techniques for vegetation assessment, Appl. Opt., 2006, 45, 1023–1033.

    Article  PubMed  CAS  Google Scholar 

  10. A. A. Gitelson, C. Buschmann, H. K. Lichtenthaler, Leaf chlorophyll fluorescence corrected for reabsorption by means of absorption and reflectance measurements, J. Plant Physiol., 1998, 152, 283–296.

    Article  CAS  Google Scholar 

  11. G. B. Cordon, M. G. Lagorio, Re-absorption of chlorophyll uorescence in leaves revisited. A comparison of correction models, Photochem. Photobiol. Sci., 2006, 5, 735–740.

    Article  PubMed  CAS  Google Scholar 

  12. G. Agati, Response of the in vivo chlorophyll fluorescence spectrum to environmental factors and laser excitation wavelength, Pure Appl. Opt., 1998, 7, 797–807.

    Article  CAS  Google Scholar 

  13. D. Wong and Govindjee, Antagonistic effects of mono- and divalent cations on polarization of chlorophyll fluorescence in thylakoids and changes in excitation energy transfer, FEBS Lett., 1979, 97, 373–379.

    Article  CAS  Google Scholar 

  14. H. Dau, Molecular mechanisms and quantitative models of variable photosystem II fluorescence, Photochem. Photobiol., 1994, 60, 1–23.

    Article  CAS  Google Scholar 

  15. J. M. Briantais, C. Vernotte, G. H. Krause, E. Weis, Chlorophyll a fluorescence in higher plants: Chloroplasts and leaves, in Light Emission by Plants and Bacteria, ed. A. J. Govindjee and D. C. Fork, Academic Press, New York, 1986, pp. 539–583.

    Chapter  Google Scholar 

  16. H. W. Trissl, B. Hecks, K. Wulf, Invariable trapping times in photosystem I upon excitation of minor long-wavelength-absorbing pigments, Photochem. Photobiol., 1993, 57, 108–112.

    Article  CAS  Google Scholar 

  17. T. A. Roelofs, C. H. Lee, A. R. Holzwarth, A new approach to the characterization of the primary processes in photosystem II alpha- and beta-units, Biophys. J., 1992, 61, 1147–1163.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. G. Agati, Z. G. Cerovic, I. Moya, The effect of decreasing temperature up to chilling values on the in vivo F685/F735 chlorophyll fluorescence ratio in phaseolus vulgaris and pisum sativum: the role of the Photosystem I contribution to the 735 nm fluorescence band, Photochem. Photobiol., 2000, 72, 75–84.

    Article  PubMed  CAS  Google Scholar 

  19. E. Pfündel, Estimating the contribution of Photosystem I to total leaf chlorophyll fluorescence, Photosynth. Res., 1998, 56, 185–195.

    Article  Google Scholar 

  20. R. B. Peterson, V. Oja, A. Laisk, Chlorophyll fluorescence at 680 and 730 nm and leaf photosynthesis, Photosynth. Res., 2001, 70, 185–196.

    Article  PubMed  CAS  Google Scholar 

  21. J. M. Anderson, N. K. Boardman, Fractionation of the photochemical systems of photosynthesis. I. Chlorophyll contents and photochemical activities of particles isolated from spinach chloroplasts, Biochim. Biophys. Acta, 1966, 112, 403–421.

    Article  CAS  Google Scholar 

  22. T. Okawa, F. Obata, K. Shibata, Two pigment proteins in spinach chloroplasts, Biochim. Biophys. Acta, 1966, 112, 223–234.

    Article  Google Scholar 

  23. P. V. Sane, R. B. Park, Purification of photosystem I reaction centers from spinach stroma lamella, Biochem. Biophys. Res. Commun., 1970, 41, 206–210.

    Article  PubMed  CAS  Google Scholar 

  24. I. Ikegami, S. Katoh, Enrichment of photosystem I reaction center chlorophyll from spinach chloroplasts, Biochim. Biophys. Acta, 1975, 376, 588–592.

    Article  PubMed  CAS  Google Scholar 

  25. W. L. Butler, M. Kitajima, Energy transfer between PSII and PSI in chloroplasts, Biochim. Biophys. Acta, 1975, 396, 72–85.

    Article  PubMed  CAS  Google Scholar 

  26. P. Haworth, J. L. Watson, C. J. Arntzen, The detection, isolation and characterization of a light-harvesting complex, which is specifically associated with Photosystem I, Biochim. Biophys. Acta, 1983, 724, 151–158.

    Article  CAS  Google Scholar 

  27. R. Croce, D. Dorra, A. R. Holzwarth, R. Jennings, Fluorescence decay and spectral evolution in intact Photosystem I of higher plants, Biochemistry, 2000, 39, 6341–6348.

    Article  PubMed  CAS  Google Scholar 

  28. C. S. French, The distribution and action in photosynthesis of several forms of chlorophyll, Proc. Natl. Acad. Sci., USA, 1971, 68, 2893–2897.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. M. Kitajima, W. L. Butler, Excitation spectra for photosystem I and photosystem II in chloroplasts and the spectral characteristics of the distribution of quanta between the two photosystems, Biochim. Biophys. Acta, 1975, 408, 297–305.

    Article  PubMed  CAS  Google Scholar 

  30. R. J. Strasser, W. L. Butler, Fluorescence emission spectra of photosystem I, photosystem II and the light-harvesting chlorophyll a/ b complex of higher plants, Biochim. Biophys. Acta, 1977, 462, 307–313.

    Article  PubMed  CAS  Google Scholar 

  31. J. E. Mullet, J. J. Burke, J. Arntzen, Chlorophyll proteins of photosystem I, Plant Physiol., 1980, 65, 814–822.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. R. Bassi, D. Simpson, Chlorophyll-protein complexes of barley Photosystem I, Eur. J. Biochem., 1987, 163, 221–30.

    Article  PubMed  CAS  Google Scholar 

  33. J. R. Evans, J. M. Anderson, Absolute absorption and relative fluorescence excitation spectra of the five major chlorophyll-protein complexes from spinach chloroplasts from spinach thylakoid membranes, Biochim. Biophys. Acta, 1987, 892, 75–82.

    Article  CAS  Google Scholar 

  34. J. Knoetzel, I. Svendsen, D. J. Simpson, Identification of the photosystem I antenna polypeptides in barley. Isolation fo the three pigment-binding antenna complexes, Eur. J. Biochem., 1992, 206, 209–215.

    Article  PubMed  CAS  Google Scholar 

  35. J. S. S. Prakash, M. A. Baig, A. S. Bhagwat, P. Mohanty, Characterisation of senescence-induced changes in light harvesting complex II and photosystem I complex of thylakoids of Cucumis sativus cotyledons: Age induced association of LHCII with Photosystem I, J. Plant Physiol., 2003, 160, 175–184.

    Article  PubMed  CAS  Google Scholar 

  36. I. Mukerji, K. Sauer, Energy Transfer Dynamics of an Isolated Light Harvesting Complex of Photosystem I from Spinach: Time-resolved Fluorescence Measurements at 295 K and 77 K, Biochim. Biophys. Acta, 1993, 1142, 311–320.

    Article  CAS  Google Scholar 

  37. N. Murata, M. Nishimura, A. Takamiya, Fluorescence of chlorophyll in photosynthetic systems III. Emission bands of chlorophyll a and the energy transfer between two pigment systems, Biochim. Biophys. Acta, 1966, 126, 234–243.

    Article  PubMed  CAS  Google Scholar 

  38. G. H. Krause and E. Weiss, The photosynthetic apparatus and Chlorophyll Fluorescence. An introduction, in Applications of Chlorophyll Fluorescence, ed. H. K. Lichtenthaler, Kluwer Academic Publisher, 1988, pp. 3–11.

    Google Scholar 

  39. I. Ikegami, Fluorescence changes related in the primary photochemical reaction in the P-700-enriched particles isolated from spinach chloroplasts, Biochim. Biophys. Acta, 1976, 449, 245–258.

    Article  PubMed  CAS  Google Scholar 

  40. G. Trinkunas, A. R. Holzwarth, Kinetic modeling of exciton migration in photosynthetic systems. 2. Simulations of excitation dynamics in 2-dimensional photosystem core antenna/reaction center complexes, Biophys. J., 1994, 66, 415–429.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. R. Bassi, D. Simpson, Chlorophyll-protein complexes of barley Photosystem I, Eur. J. Biochem., 1987, 163, 221–230.

    Article  PubMed  CAS  Google Scholar 

  42. D. A. Berthold, G. T. Babcock, C. F. Yocum, A highly resolved oxygen-evolving Photosystem II preparation from spinach thylakoids membranes, FEBS Lett., 1981, 134, 231–234.

    Article  CAS  Google Scholar 

  43. F. Franck, P. Juneau, R. Popovic, Resolution of the photosystem I and photosystem II contributions to chlorophyll fluorescence of intact leaves at room temperature, Biochim. Biophys. Acta, 2002, 1556, 239–246.

    Article  PubMed  CAS  Google Scholar 

  44. H. K. Lichtenthaler, C. Buschmann, M. Doll, H.-J. Fietz, T. Bach, U. Kozel, D. Meier,U. Rahmosdorf, Photosynthetic activity chloroplast ultrastructure and leaf characteristics of high-light and low-light plants and of sun and shade leaves, Photosynth. Res., 1981, 2, 115–141.

    Article  PubMed  CAS  Google Scholar 

  45. H. K. Lichtenthaler, G. Kuhn, U. Prenzel, C. Buschmann, D. Meier, Adaptation of chloroplast ultrastructure and of chlorophyll-protein levels to high-light and low-light growth conditions, Z. Naturforsc., C, 1982, 37, 464–475.

    Article  Google Scholar 

  46. J. M. Anderson, Photoregulation of the composition, function and structure of thylakoid membranes, Annu. Rev. Plant Physiol., 1986, 37, 93–136.

    Article  CAS  Google Scholar 

  47. J. M. Anderson, B. Andersson, The dynamic photosynthetic membrane and regulation of solar energy conversion, Trends Biochem. Sci., 1988, 13, 351–355.

    Article  PubMed  CAS  Google Scholar 

  48. A. Melis, Dynamics of photosynthetic membrane composition and function, Biochim. Biophys. Acta, 1991, 1058, 87–106.

    Article  CAS  Google Scholar 

  49. J. M. Anderson, W. S. Chow, Y.-I. Park, The grand design of photosynthesis: acclimation of the photosynthetic apparatus to environmental cues, Photosynth. Res., 1995, 46, 129–139.

    Article  PubMed  CAS  Google Scholar 

  50. S. Malkin, D. C. Fork, Photosynthetic units of sun and shade plants, Plant Physiol., 1981, 67, 580–583.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. W. S. Chow, A. Melis, J. M. Anderson, Adjustments of photosystem stoichiometry in chloroplasts improve the quantum efficiency of photosynthesis, Proc. Natl. Acad. Sci., USA, 1990, 87, 7502–7506.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. S. Bailey, R. G. Walters, S. Jansson, P. Horton, Acclimation of Arabidopsis thaliana to the light environment: the existence of separate low-light and high-light responses, Planta, 2001, 213, 794–801.

    Article  PubMed  CAS  Google Scholar 

  53. T.-Y. Leong, J. M. Anderson, Adaptation of the thylakoid membranes of pea chloroplasts to light intensities. II. Regulation of electron transport capacities, electron carriers, coupling factor (CF1) activity and rates of photosynthesis, Photosynth. Res., 1984, 5, 117–128.

    Article  PubMed  CAS  Google Scholar 

  54. M. Ballottari, L. Dall’Osto, T. Morosinotto, R. Bassi, Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation, J. Biol. Chem., 2007, 282, 8947–8958.

    Article  PubMed  CAS  Google Scholar 

  55. A. Akoumianaki-Ioannidou, J. H. Georgakopoulos, C. Fasseas, J. H. Argyroudi-Akoyunoglou, Photoacclimation in Spathiphyllum, J. Photochem. Photobiol., B, 2004, 73, 149–158.

    Article  CAS  Google Scholar 

  56. L. Taiz, E. Zeiger, Plant Physiology, Sinauer Associates, Sunderland, Massachusetts, 1998, 2nd edn, 792 pp.

    Google Scholar 

  57. W. S. Chow, J. A. Anderson, A. B. Hope, Variable stoichiometries of photosystem II to photosystem I reaction centers, Photosynth. Res., 1988, 17, 277–281.

    Article  PubMed  CAS  Google Scholar 

  58. A. Melis, Spectroscopic Methods in Photosynthesis: Photosystem Stoichiometry and Chlorophyll Antenna Size, Philos. Trans. R. Soc. London, Ser. B, 1989, 323, 397–409.

    Article  CAS  Google Scholar 

  59. D. Y. Fan, A. B. Hope, P. J. Smith, et al., The stoichiometry of the two photosystems in higher plants revisited, Biochim. Biophys. Acta, 2007, 1767, 1064–1072.

    Article  PubMed  CAS  Google Scholar 

  60. L. A. Tumerman, E. M. Sorokin, The photosynthetic unit: a physical or statistical model?, Mol. Biol. USSR (English Transl.), 1967, 1, 527–535.

    Google Scholar 

  61. I. Moya, M. Hodges, J. C. Barbet, Modification of room temperature picosecond chlorophyll fluorescence kinetics in green algae by photosystem 2 trap closure, FEBS Lett., 1986, 198, 256–262.

    Article  CAS  Google Scholar 

  62. M. Hodges, I. Moya, Time resolved chlorophyll fluorescence studies of pigment protein complexes from photosynthetic membranes, Biochim. Biophys. Acta, 1988, 935, 41–52.

    Article  CAS  Google Scholar 

  63. N. Moise, I. Moya, Correlation between lifetime heterogeneity and kinetics heterogeneity during chlorophyll fluorescence induction in leaves: 1. Mono-frequency phase and modulation analysis reveals a conformational change of a PSII pigment complex during the I-P thermal phase, Biochim. Biophys. Acta, 2004, 1657, 33–46.

    Article  PubMed  CAS  Google Scholar 

  64. S. S. Brody, E. Rabinowitch, Excitation lifetime of photosynthetic pigments in vitro and in vivo, Science, 1957, 125, 555.

    Article  PubMed  CAS  Google Scholar 

  65. M. Hodges, I. Moya, Modification of room temperature picosecond chlorophyll fluorescence kinetics in Photosystem 2-enriched particles by photochemistry, Biochim. Biophys. Acta, 1987, 892, 42–47.

    Article  CAS  Google Scholar 

  66. A. Krieger, I. Moya, E. Weis, Energy dependent quenching of chlorophyll-a fluorescence - Effect of pH on fluorescence induction and picosecond relaxation kinetics in thylakoid membranes and photosystem II particles, Biochim. Biophys. Acta, 1992, 1102, 167–176.

    Article  CAS  Google Scholar 

  67. G. Schmuck, I. Moya, Time-resolved chlorophyll fluorescence spectra of intact leaves, Remote Sensing Environ., 1994, 47, 72–76.

    Article  Google Scholar 

  68. H. Lokstein, L. Tian, J. E. W. Polle, D. DellaPenna, Xanthophyll biosynthetic mutants of Arabidopsis thaliana: altered nonphotochemical quenching of chlorophyll fluorescence is due to changes in Photosystem II antenna size and stability, Biochim. Biophys. Acta, 2002, 1553, 309–319.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedrós, R., Moya, I., Goulas, Y. et al. Chlorophyll fluorescence emission spectrum inside a leaf. Photochem Photobiol Sci 7, 498–502 (2008). https://doi.org/10.1039/b719506k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b719506k

Navigation