Skip to main content
Log in

Tissue distribution and pharmacokinetics of an ATWLPPR-conjugated chlorin-type photosensitizer targeting neuropilin-1 in glioma-bearing nude mice

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Destruction of the neovasculature is essential for efficient tumor eradication by photodynamic therapy ( PDT). The PDT anti-vascular effect can be promoted by developing addressed photosensitizers localized preferentially to the tumor vascular compartment. A new photosensitizer conjugated to an heptapeptide [ H-Ala-Thr-Trp-Leu-Pro-Pro-Arg-OH ( ATWLPPR)] targeting neuropilin-1, a Vascular Endothelial Growth Factor (VEGF) co-receptor, has been synthesized. It was administered intravenously for an easier access to endothelial cells lining the vasculature in human malignant glioma-bearing nude mice. Plasma pharmacokinetic parameters were derived from plasma concentration—time data using a non-compartmental analysis and validated a relatively rapid elimination from the blood compartment with an elimination rate constant of 0.062 h−1 and a biological half-life of 11.0 h. The photosensitizer was mainly concentrated in organs such as liver, spleen and kidneys, which are rich in reticuloendothelial cells. In these organs, the elimination profiles of the photosensitizer were comparable, with half-lives as short as 12.2, 15.1 and 19.7 h, respectively. The peptidic moiety of the conjugated photosensitizer was degraded to various rates depending on the organ considered, most of the degradation process occurred in organs of the reticuloendothelial system. A metabolic product resulting from the enzymatic cleavage of the peptide bond between Ala and Thr was detected in plasma at all the examined time points from 2 h post-injection. The conjugated photosensitizer accumulated rapidly and at high levels in the tumor, with 2.3% of injected dose per gram of tumor tissue at 1 h after injection. Taking into account the aspecific uptake of the degradation product, the tumor levels of total photoactivable compounds might exhibit an interesting photodynamic activity. On the contrary, levels of total photoactivable compounds remained low in the skin. This study provides essential information for the choice of the time interval not to exceed to activate the photosensitizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ichikawa, T. Hikita, N. Maeda, S. Yonezawa, Y. Takeuchi, T. Asai, Y. Namba, N. Oku, Antiangiogenic photodynamic therapy (PDT) by using long-circulating liposomes modified with peptide specific to angiogenic vessels, Biochim. Biophys. Acta, 2005, 1669, 69–74.

    Article  CAS  Google Scholar 

  2. V. Chaleix, V. Sol, M. Guilloton, R. Granet, P. Krausz, Efficient synthesis of RGD-containing cyclic peptide-porphyrin conjugates by ring-closing metathesis on solid support, Tetrahedron Lett., 2004, 45, 5295–5299.

    Article  CAS  Google Scholar 

  3. V. Chaleix, V. Sol, Y.-M. Huang, M. Guilloton, R. Granet, J.-C. Blais, P. Krausz, RGD-Porphyrin Conjugates: Synthesis and Potential Application in Photodynamic Therapy, Eur. J. Org. Chem., 2003, 8, 1486–1493.

    Article  Google Scholar 

  4. R. Z. Renno, Y. Terada, M. J. Haddadin, N. A. Michaud, E. S. Gragoudas, J. W. Miller, Selective photodynamic therapy by targeted verteporfin delivery to experimental choroidal neovascularization mediated by a homing peptide to vascular endothelial growth factor receptor-2, Arch. Ophthalmol., 2004, 122, 1002–1011.

    Article  CAS  Google Scholar 

  5. C. Frochot, B. Di Stasio, R. Vanderesse, M. J. Belgy, M. Dodeller, F. Guillemin, M. L. Viriot, M. Barberi-Heyob, Interest of RGD-containing linear or cyclic peptide targeted tetraphenylchlorin as novel photosensitizers for selective photodynamic activity, Bioorg. Chem., 2007, 35, 205–220.

    Article  CAS  Google Scholar 

  6. S. Soker, S. Takashima, H. Q. Miao, G. Neufeld, M. Klagsbrun, Neuropilin-1 Is Expressed by Endothelial and Tumor Cells as an Isoform-Specific Receptor for Vascular Endothelial Growth Factor, Cell, 1998, 92, 735–745.

    Article  CAS  Google Scholar 

  7. L. Tirand, C. Frochot, R. Vanderesse, N. Thomas, E. Trinquet, S. Pinel, M. L. Viriot, F. Guillemin, M. Barberi-Heyob, A peptide competing with VEGF165 binding on neuropilin-1 mediates targeting of a chlorin-type photosensitizer and potentiates its photodynamic activity in human endothelial cells, J. Controlled Release, 2006, 111, 153–164.

    Article  CAS  Google Scholar 

  8. L. Tirand, N. Thomas, M. Dodeller, D. Dumas, C. Frochot, B. Maunit, F. Guillemin, M. Barberi-Heyob, Metabolic profile of a peptide-conjugated chlorin-type photosensitizer targeting neuropilin-1: an in vivo and in vitro study, Drug Metab. Dispos., 2007, 35, 806–813.

    Article  CAS  Google Scholar 

  9. S. Pinel, M. Barberi-Heyob, E. Cohen-Jonathan, J. L. Merlin, C. Delmas, F. Plenat, P. Chastagner, Erythropoietin-induced reduction of hypoxia before and during fractionated irradiation contributes to improvement of radioresponse in human glioma xenografts, Int. J. Radiat. Oncol. Biol. Phys., 2004, 59, 250–259.

    Article  CAS  Google Scholar 

  10. M. Barberi-Heyob, H. Rezzoug, J. L. Merlin, F. Guillemin, Sensitive isocratic liquid chromatographic assay for the determination of 5,10,15,20-tetra( m-hydroxyphenyl)chlorin in plasma and tissue with electrochemical detection, J. Chromatogr., B: Biomed. Sci. Appl., 1997, 688, 331–338.

    Article  CAS  Google Scholar 

  11. D. E. Dolmans, A. Kadambi, J. S. Hill, C. A. Waters, B. C. Robinson, J. P. Walker, D. Fukumura, R. K. Jain, Vascular accumulation of a novel photosensitizer, MV6401, causes selective thrombosis in tumor vessels after photodynamic therapy, Cancer Res., 2002, 62, 2151–2156.

    CAS  PubMed  Google Scholar 

  12. P. Cramers, M. Ruevekamp, H. Oppelaar, O. Dalesio, P. Baas, F. A. Stewart, Foscan uptake and tissue distribution in relation to photodynamic efficacy, Br. J. Cancer, 2003, 88, 283–290.

    Article  CAS  Google Scholar 

  13. H. J. Jones, D. I. Vernon, S. B. Brown, Photodynamic therapy effect of m-THPC (Foscan) in vivo: correlation with pharmacokinetics, Br. J. Cancer, 2003, 89, 398–404.

    Article  CAS  Google Scholar 

  14. D. I. Vernon, J. A. Holroyd, S. M. Stribbling, S. B. Brown, The quantitative determination of Photofrin and Polyhaematoporphyrin in plasma: pitfalls and inaccuracies, J. Photochem. Photobiol., B, 1995, 27, 209–217.

    Article  CAS  Google Scholar 

  15. S. B. Brown, D. I. Vernon, J. A. Holroyd, S. Marcus, R. Trust, W. Hawkins, A. Shah and A. Tonelli, Pharmacokinetics of photofrin in man, in Phodynamic Therapy and Biomedical Lasers, ed. P. Spinelli, M. Dal, Fante and R. Marchesini, Elsevier Science, Amsterdam, 1992, pp. 475–479.

    Google Scholar 

  16. T. Glanzmann, C. Hadjur, M. Zellweger, P. Grosiean, M. Forrer, J. P. Ballini, P. Monnier, H. van den Bergh, C. K. Lim, G. Wagnieres, Pharmacokinetics of tetra( m-hydroxyphenyl)chlorin in human plasma and individualized light dosimetry in photodynamic therapy, Photochem. Photobiol., 1998, 67, 596–602.

    CAS  PubMed  Google Scholar 

  17. B. Clark, and D. A. Smith, An Introduction to Pharmacokinetics, Oxford, Blackwell Scientific Publications, 2nd edn, 1986.

    Google Scholar 

  18. H. J. Hopkinson, D. I. Vernon, S. B. Brown, Identification and partial characterization of an unusual distribution of the photosensitizer meta-tetrahydroxyphenyl chlorin (temoporfin) in human plasma, Photochem. Photobiol., 1999, 69, 482–488.

    Article  CAS  Google Scholar 

  19. G. Jori, C. Fabris, Relative contributions of apoptosis and random necrosis in tumour response to photodynamic therapy: effect of the chemical structure of Zn(ii)-phthalocyanines, J. Photochem. Photobiol., B, 1998, 43, 181–185.

    Article  CAS  Google Scholar 

  20. A. A. Rosenkranz, D. A. Jans, A. S. Sobolev, Targeted intracellular delivery of photosensitizers to enhance photodynamic efficiency, Immunol. Cell Biol., 2000, 78, 452–464.

    Article  CAS  Google Scholar 

  21. H. Ding, X. Wu, L. Roncari, N. Lau, P. Shannon, A. Nagy, A. Guha, Expression and regulation of neuropilin-1 in human astrocytomas, Int. J. Cancer, 2000, 88, 584–592.

    Article  CAS  Google Scholar 

  22. J. K. McDonald and A. J. Barrette, Mammalian proteases: A glossary and citliography.1. Endoproteases, Academic Press, London, 1980.

    Google Scholar 

  23. J. K. McDonald and A. J. Barrette, Mammalian proteases: A glossary and citliography. 2. Exopeptidases, Academic Press, London, 1986.

    Google Scholar 

  24. A. Starzec, P. Ladam, R. Vassy, S. Badache, N. Bouchemal, A. Navaza, C. H. du Penhoat, G. Y. Perret, Structure-function analysis of the antiangiogenic ATWLPPR peptide inhibiting VEGF(165) binding to neuropilin-1 and molecular dynamics simulations of the ATWLPPR/neuropilin-1 complex, Peptides, 2007.

    Google Scholar 

  25. M. T. Jarvi, M. J. Niedre, M. S. Patterson, B. C. Wilson, Singlet oxygen luminescence dosimetry (SOLD) for photodynamic therapy: current status, challenges and future prospects, Photochem. Photobiol., 2006, 82, 1198–1210.

    Article  CAS  Google Scholar 

  26. J. S. Dysart, G. Singh, M. S. Patterson, Calculation of singlet oxygen dose from photosensitizer fluorescence and photobleaching during mTHPC photodynamic therapy of MLL cells, Photochem. Photobiol., 2005, 81, 196–205.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muriel Barberi-Heyob.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, N., Tirand, L., Chatelut, E. et al. Tissue distribution and pharmacokinetics of an ATWLPPR-conjugated chlorin-type photosensitizer targeting neuropilin-1 in glioma-bearing nude mice. Photochem Photobiol Sci 7, 433–441 (2008). https://doi.org/10.1039/b718259g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b718259g

Navigation