Skip to main content
Log in

In vivo and in vitro characterisation of a protoporphyrin IX-cyclic RGD peptide conjugate for use in photodynamic therapy

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Increasing treatment specificity is one of the major aims of cancer research. Photodynamic therapy is a clinically proven treatment for some cancers and certain other diseases. Photosensitisers generally have little intrinsic selectivity for tumours and any accumulation is dependent upon the type of tumour involved. Increasing tumour selective accumulation could improve the efficacy of PDT and reduce any risk of side effects caused by photosensitiser accumulation in non-target tissue. In order to target photosensitisers to tumours, a cyclic peptide, cRGDfK (arginine-glycine-aspartic acid-phenylalanine-lysine) has been synthesised using solid phase peptide chemistry and conjugated to the porphyrin photosensitiser, protoporphyrin IX. The arginine-glycine-aspartic acid (RGD) motif has been shown to specifically bind αvβ3 integrins, heterodimeric glycoproteins upregulated on the surface of proliferating endothelial cells such as those in tumour neovasculature. This study reports the synthesis, in vitro and in vivo characterisation of this novel compound and compares its properties to the free photosensitiser. The individual components in our system, protoporphyrin IX and cRGDfK retain their respective photodynamic and integrin binding activity following the coupling step and produce a conjugate of high purity. The PpIX:cRGDfK conjugate is shown to be a good photosensitiser in vitro in the integrin positive human SiHa cell line and in vivo in a mouse CaNT tumour model. Moreover, pharmacokinetic analysis of PpIX:cRGDfK treated mice shows significant retention and accumulation of photosensitiser in tumour tissue with higher tumour : normal tissue ratios than the free photosensitiser. However, although the conjugate shows this higher accumulation and improved tumour : non-target tissue ratios, the overall in vivo PDT effect, between dose-light intervals of 0 and 6 h, is not significantly better than for free protoporphyrin IX This is possibly due to differences in the target environment or in the subcellular localisation of the compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. B. Brown, E. A. Brown and I. Walker, The present and future role of photodynamic therapy in cancer treatment, Lancet Oncol., 2004, 5, 497–508.

    Article  CAS  Google Scholar 

  2. D. E. Dolmans, D. Fukumura and R. K. Jain, Photodynamic therapy for cancer, Nat. Rev. Cancer, 2003, 3, 380–387.

    Article  CAS  Google Scholar 

  3. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst., 1998, 90, 889–905.

    Article  CAS  Google Scholar 

  4. G. Jori, C. Fabris, M. Soncin, S. Ferro, O. Coppellotti, D. Dei, L. Fantetti, G. Chiti and G. Roncucci, Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications, Lasers Surg. Med., 2006, 38, 468–481.

    Article  Google Scholar 

  5. T. Maisch, R. M. Szeimies, G. Jori, C. Abels, L. Madden, O. J. Clarke, A. Pelegrin, J. Greenman and R. W. Boyle, Antibacterial photodynamic therapy in dermatology, Photochem. Photobiol. Sci., 2004, 3, 907–917.

    Article  CAS  Google Scholar 

  6. R. Hudson and R. W. Boyle, Strategies for selective delivery of photodynamic sensitisers to biological targets, J. Porphyrins Phthalocyanines, 2004, 8, 954–975.

    Article  CAS  Google Scholar 

  7. A. M. Richter, E. Waterfield, A. K. Jain, A. J. Canaan, B. A. Allison and J. G. Levy, Liposomal, delivery of a photosensitizer, benzoporphyrin derivative monoacid ring A (BPD), to tumor tissue in a mouse tumor model, Photochem. Photobiol., 1993, 57, 1000–1006.

    Article  CAS  Google Scholar 

  8. K. Kurohane, A. Tominaga, K. Sato, J. R. North, Y. Namba and N. Oku, Photodynamic therapy targeted to tumor-induced angiogenic vessels, Cancer Lett., 2001, 167, 49–56.

    Article  CAS  Google Scholar 

  9. E. Allemann, J. Rousseau, N. Brasseur, S. V. Kudrevich, K. Lewis, J. E. van Lier, Photodynamic therapy of tumours with hexadecafluoro zinc phthalocynine formulated in PEG-coated poly(lactic acid) nanoparticles, Int. J. Cancer, 1996, 66, 821–824.

    Article  CAS  Google Scholar 

  10. N. Swamy, D. A. James, S. C. Mohr, R. N. Hanson and R. Ray, An estradiol-porphyrin conjugate selectively localizes into estrogen receptor-positive breast cancer cells, Bioorg. Med. Chem., 2002, 10, 3237–3243.

    Article  CAS  Google Scholar 

  11. G. A. van Dongen, G. W. Visser and M. B. Vrouenraets, Photosensitizer-antibody conjugates for detection and therapy of cancer, Adv. Drug Deliv. Rev., 2004, 56, 31–52.

    Article  Google Scholar 

  12. N. Malatesti, K. Smith, H. Savoie, J. Greenman and R. W. Boyle, Synthesis, and in vitro investigation of cationic 5,15-diphenyl porphyrin-monoclonal antibody conjugates as targeted photodynamic sensitisers, Int. J. Oncol., 2006, 28, 1561–1569.

    CAS  PubMed  Google Scholar 

  13. R. Hudson, M. Carcenac, K. Smith, L. Madden, O. J. Clarke, A. Pelegrin, J. Greenman and R. W. Boyle, The development and characterisation of porphyrin isothiocyanate-monoclonal antibody conjugates for photoimmunotherapy, Br. J. Cancer, 2005, 92, 1442–1449.

    Article  CAS  Google Scholar 

  14. C. Staneloudi, K. A. Smith, R. Hudson, N. Malatesti, H. Savoie, R. W. Boyle and J. Greenman, Development and characterization of novel photosensitizer: scFv conjugates for use in photodynamic therapy of cancer, Immunology, 2007, 120, 512–517.

    Article  CAS  Google Scholar 

  15. M. B. Vrouenraets, G. W. Visser, F. A. Stewart, M. Stigter, H. Oppelaar, P. E. Postmus, G. B. Snow, G. A van Dongen, Development of meta-tetrahydroxyphenylchlorin-monoclonal antibody conjugates for photoimmunotherapy, Cancer Res., 1999, 59, 1505–1513.

    CAS  PubMed  Google Scholar 

  16. T. Boehm, J. Folkman, T. Browder and M. S. O’Reilly, Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance, Nature, 1997, 390, 404–407.

    Article  CAS  Google Scholar 

  17. K. Ichikawa, T. Hikita, N. Maeda, S. Yonezawa, Y. Takeuchi, T. Asai, Y. Namba and N. Oku, Antiangiogenic photodynamic therapy (PDT) by using long-circulating liposomes modified with peptide specific to angiogenic vessels, Biochim. Biophys. Acta, 2005, 1669, 69–74.

    Article  CAS  Google Scholar 

  18. R. Max, R. R. Gerritsen, P. T. Nooijen, S. L. Goodman, A. Sutter, U. Keilholz, D. J. Ruiter, R. M. de Waal, Immunohistochemical analysis of integrin alpha v beta 3 expression on tumor-associated vessels of human carcinomas, Int. J. Cancer, 1997, 71, 320–324.

    Article  CAS  Google Scholar 

  19. P. C. Brooks, R. A. Clark and D. A. Cheresh, Requirement of vascular integrin alpha v beta 3 for angiogenesis, Science, 1994, 264, 569–571.

    Article  CAS  Google Scholar 

  20. M. D. Pierschbacher and E. Ruoslahti, Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule, Nature, 1984, 309, 30–33.

    Article  CAS  Google Scholar 

  21. E. Ruoslahti, The RGD story: a personal account, Matrix Biol., 2003, 22, 459–465.

    Article  CAS  Google Scholar 

  22. E. Ruoslahti, RGD, and other recognition sequences for integrins, Annu. Rev. Cell Dev. Biol., 1996, 12, 697–715.

    Article  CAS  Google Scholar 

  23. M. D. Pierschbacher and E. Ruoslahti, Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding specificity in cell adhesion, J. Biol. Chem., 1987, 262, 17294–17298.

    Article  CAS  Google Scholar 

  24. M. Aumailley, M. Gurrath, G. Muller, J. Calvete, R. Timpl and H. Kessler, Arg-Gly-Asp, constrained within cyclic pentapeptides. Strong and selective inhibitors of cell adhesion to vitronectin and laminin fragment P1, FEBS Lett., 1991, 291, 50–54.

    Article  CAS  Google Scholar 

  25. C. F. McCusker, P. J. Kocienski, F. T. Boyle and A. G. Schatzlein, Solid-phase synthesis of c(RGDfK) derivatives: on-resin cyclisation and lysine functionalisation, Bioorg. Med. Chem. Lett., 2002, 12, 547–549.

    Article  CAS  Google Scholar 

  26. S. Verrier, S. Pallu, R. Bareille, A. Jonczyk, J. Meyer, M. Dard and J. Amedee, Function of linear and cyclic RGD-containing peptides in osteoprogenitor cells adhesion process, Biomaterials, 2002, 23, 585–596.

    Article  CAS  Google Scholar 

  27. R. Haubner and H. J. Wester, Radiolabeled tracers for imaging of tumor angiogenesis and evaluation of anti-angiogenic therapies, Curr. Pharm. Des., 2004, 10, 1439–1455.

    Article  CAS  Google Scholar 

  28. W. Arap, R. Pasqualini and E. Ruoslahti, Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model, Science, 1998, 279, 377–380.

    Article  CAS  Google Scholar 

  29. X. Chen, C. Plasencia, Y. Hou and N. Neamati, Synthesis and biological evaluation of dimeric RGD peptide–paclitaxel conjugate as a model for integrin-targeted drug delivery, J. Med. Chem., 2005, 48, 1098–1106.

    Article  CAS  Google Scholar 

  30. H. M. Ellerby, W. Arap, L. M. Ellerby, R. Kain, R. Andrusiak, G. D. Rio, S. Krajewski, C. R. Lombardo, R. Rao, E. Ruoslahti, D. E. Bredesen and R. Pasqualini, Anti-cancer activity of targeted pro-apoptotic peptides, Nat. Med., 1999, 5, 1032–1038.

    Article  CAS  Google Scholar 

  31. C. Frochot, B. D. Stasio, R. Vanderesse, M. J. Belgy, M. Dodeller, F. Guillemin, M. L. Viriot and M. Barberi-Heyob, Interest of RGD-containing linear or cyclic peptide targeted tetraphenylchlorin as novel photosensitizers for selective photodynamic activity, Bioorg. Chem., 2006, 35, 205–220.

    Article  Google Scholar 

  32. I. Walker, D. I. Vernon and S. B. Brown, The solid-phase conjugation of purpurin-18 with a synthetic targeting peptide, Bioorg. Med. Chem. Lett., 2004, 14, 441–443.

    Article  CAS  Google Scholar 

  33. N. Chatterjee and A. Chatterjee, Role of alpha v beta 3 integrin receptor in the invasive potential of human cervical cancer (SiHa) cells, J. Environ. Pathol. Toxicol. Oncol., 2001, 20, 211–221.

    Article  CAS  Google Scholar 

  34. A. J. Schraa, R. J. Kok, A. D. Berendsen, H. E. Moorlag, E. J. Bos, D. K. Meijer, L. F. de Leij and G. Molema, Endothelial cells internalize and degrade RGD-modified proteins developed for tumor vasculature targeting, J. Controlled Release, 2002, 83, 241–251.

    Article  CAS  Google Scholar 

  35. P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J. T. Warren, H. Bokesch, S. Kenney and M. R. Boyd, New colorimetric cytotoxicity assay for anticancer-drug screening, J. Natl. Cancer Inst., 1990, 82, 1107–1112.

    Article  CAS  Google Scholar 

  36. Y. OH. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem., 1951, 193, 265–275.

    Article  CAS  Google Scholar 

  37. H. B. Hewitt, E. Blake and E. H. Proter, The effect of lethally irradiated cells on the transplantability of murine tumours, Br. J. Cancer, 1973, 28, 123–135.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David I. Vernon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conway, C.L., Walker, I., Bell, A. et al. In vivo and in vitro characterisation of a protoporphyrin IX-cyclic RGD peptide conjugate for use in photodynamic therapy. Photochem Photobiol Sci 7, 290–298 (2008). https://doi.org/10.1039/b715141a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b715141a

Navigation