Skip to main content
Log in

Solid-state dye-sensitized TiO2 solar cells based on a sensitizer covalently wired to a hole conducting polymer

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We report on the molecular wiring efficiency of a ruthenium polypyridine complex acting as a sensitizer connected to a poly(3-hexyl)thiophene chain acting as hole transporting material. We have developed an efficient synthetic strategy to covalently connect via an ethanyl spacer a regioregular poly(3-hexyl)thiophene chain to a ruthenium complex. Solid-state dye-sensitized solar cells were prepared either with the latter system or with a similar ruthenium sensitizer but lacking the polymer chain (reference system). The comparison of the photocurrent—photovoltage characteristics of the cells recorded under AM1.5 indicates a two fold improvement of the overall photoconversion efficiencies when the sensitizer is grafted to the hole transporting material (η = 0.27%) relative to the reference system (η = 0.13%). The higher photovoltaic performance can be attributed to the better diffusion-like propagation of the holes from the sensitizer to the counter electrode through the covalently linked polythiophene chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. F. Nogueira, C. Longo and M. A. De Paoli, Polymers in dye sensitized solar cells: overview and perspectives, Coord. Chem. Rev., 2004, 248, 1455–1468.

    Article  CAS  Google Scholar 

  2. B. Li, L. Wang, B. Kang, P. Wang and Y. Qiu, Review of recent progress in solid-state dye-sensitized solar cells, Sol. Energy Mater. Sol. Cells, 2006, 90, 549–573.

    Article  CAS  Google Scholar 

  3. W. Kubo, S. Kambe, S. Nakade, T. Kitamura, K. Hanabusa, Y. Wada and S. Yanagida, Photocurrent-Determining Processes in Quasi-Solid-State Dye-Sensitized Solar Cells Using Ionic Gel Electrolytes, J. Phys. Chem. B, 2003, 107, 4374–4381.

    Article  CAS  Google Scholar 

  4. A. F. Nogueira, J. R. Durrant and M. A. De, Paoli, Dye-Sensitized Nanocrystalline Solar Cells Employing a Polymer Electrolyte, Adv. Mater., 2001, 13, 826–830.

    Article  CAS  Google Scholar 

  5. M.-S. Kang, J. H. Kim, Y. J. Kim, J. Won, N.-G. Park and Y. S. Kang, Dye-sensitized solar cells based on composite solid polymer electrolytes, Chem. Commun., 2005, 889–891.

    Google Scholar 

  6. T. Stergiopoulos, I. M. Arabatzis, G. Katsaros and P. Falaras, Binary Polyethylene Oxide/Titania Solid-State Redox Electrolyte for Highly Efficient Nanocrystalline TiO2 Photoelectrochemical Cells, Nano Lett., 2002, 2, 1259–1261.

    Article  CAS  Google Scholar 

  7. B. O’Regan and D. T. Schwartz, Large Enhancement in Photocurrent Efficiency Caused by UV Illumination of the Dye-Sensitized Heterojunction TiO2/RuLL’NCS/CuSCN: Initiation and Potential Mechanisms, Chem. Mater., 1998, 6, 1501–1509.

    Article  Google Scholar 

  8. B. O’Regan, F. Lenzmann, R. Muis and J. Wienke, A Solid-State Dye-Sensitized Solar Cell Fabricated with Pressure-Treated P25-TiO2 and CuSCN: Analysis of Pore Filling and IV Characteristics, Chem. Mater., 2002, 14, 5023–5029.

    Article  CAS  Google Scholar 

  9. Q.-B. Meng, K. Takahashi, X.-T. Zhang, I. Sutanto, T. N. Rao, O. Sato, A. Fujishima, H. Watanabe, T. Nakamori and M. Uragami, Fabrication of an Efficient Solid-State Dye-Sensitized Solar Cell, Langmuir, 2003, 19, 3572–3574.

    Article  CAS  Google Scholar 

  10. G. R. R. Kumara, A. Konno, R. Senadeera, D. B. R. A. Jayaweera, K. De Silva and K. Tennakone, Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulfide, Sol. Energy Mater. Sol. Cells, 2001, 69, 195–199.

    Article  CAS  Google Scholar 

  11. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, Solid-state dye sensitized nanoporous solar cells with high photon-to-electron conversion efficiencies, Nature, 1998, 395, 583–585.

    Article  CAS  Google Scholar 

  12. N. Ikeda and T. Miyasaka, A solid-state dye-sensitized photovoltaic cell with a poly(N-vinylcarbazole) hole transporter mediated by an alkali iodide, Chem. Commun., 2005, 1886–1888.

    Google Scholar 

  13. K. R. Haridas, J. Ostrauskaite, M. Thelakkat, M. Heim, R. Bilke and D. Haarer, Synthesis of low melting hole conductor systems based on triarylamines and application in dye sensitized solar cells, Synth. Met., 2001, 121, 1573–1574.

    Article  CAS  Google Scholar 

  14. S. Tan, J. Zhai, M. Wan, Q. B. Meng, F. Y. Li, L. Jiang and D. Zhu, Influence of Small Molecules in Conducting Polyaniline on the Photovoltaic Properties of Solid-State Dye-Sensitized Solar Cells, J. Phys. Chem. B, 2004, 108, 18693–18697.

    Article  CAS  Google Scholar 

  15. S. Spiekermann, G. Smestad, J. Kowalik, L. M. Tolbert, M. Grätzel, Poly(4-undecyl-2,2’-bithiophene) as a hole conductor in solid state dye sensitized titanium dioxide solar cells, Synth. Met., 2001, 121, 1603–1604.

    Article  CAS  Google Scholar 

  16. U. Bach, Y. Tachibana, J. E. Moser, S. A. Haque, J. R. Durrant, M. Grätzel and D. A. Klug, Charge Separation in Solid-State Dye-Sensitized Heterojunction Solar Cells, J. Am. Chem. Soc., 1999, 121, 7445–7446.

    Article  CAS  Google Scholar 

  17. L. Schmidt-Mende, M. Grätzel, TiO2 pore-filling and its effect on the efficiency of solid-state dye-sensitized solar cells, Thin Solid Films, 2006, 500, 296–301.

    Article  CAS  Google Scholar 

  18. D. Gebeyehu, C. J. Brabec and N. S. Sariciftci, Solid-state organic/inorganic hybrid solar cells based on conjugated polymers and dye-sensitized TiO2 electrodes, Thin Solid Films, 2002, 403–404, 271–274.

    Article  Google Scholar 

  19. H.-S. Kim and C. C. Wamser, Photoelectropolymerization of aniline in a dye-sensitized solar cell, Photochem. Photobiol. Sci., 2006, 5, 955–960.

    Article  CAS  PubMed  Google Scholar 

  20. G. K. R. Senadeera, T. Kitamura, Y. Wadab and S. Yanagida, Deposition of polyaniline via molecular self-assembly on TiO2 and its uses as a sensitiser in solid-state solar cells, J. Photochem. Photobiol., A, 2004, 164, 61–66.

    Article  CAS  Google Scholar 

  21. G. P. Smestad, S. Spiekermann, J. Kowalik, C. D. Grant, A. M. Schwartzberg, J. Z. Zhang, L. M. Tolbert and E. Moons, A technique to compare polythiophene solid-state dye sensitized TiO2 solar cells to liquid junction devices, Sol. Energy Mater. Sol. Cells, 2003, 76, 85–105.

    Article  CAS  Google Scholar 

  22. Y. Saito, T. Azechi, T. Kitamura, H. Y. Y. Wada and S. Yanagida, Photo-sensitizing ruthenium complexes for solid state dye solar cells in combination with conducting polymers as hole conductors, Coord. Chem. Rev., 2004, 28, 1469–1478.

    Article  CAS  Google Scholar 

  23. Y. Saito, N. Fukuri, R. Senadeera, T. Kitamura, Y. Wada and S. Yanagida, Solid state dye sensitized solar cells using in situ polymerized PEDOTs as hole conductor, Electrochem. Commun., 2004, 6, 71–74.

    Article  CAS  Google Scholar 

  24. Y. Saito, T. Kitamura, Y. Wada and S. Yanagida, Poly(3,4-ethylenedioxythiophene) as a hole conductor in solid state dye sensitized solar cells, Synth. Met., 2002, 131, 185–187.

    Article  CAS  Google Scholar 

  25. K. Peter and M. Thelakkat, Synthesis and Characterization of Bifunctional Polymers Carrying Tris(bipyridyl)ruthenium(ii) and Triphenylamine Units, Macromolecules, 2003, 36, 1779–1785.

    Article  CAS  Google Scholar 

  26. K. Peter, H. Wietasch, B. Peng and M. Thelakkat, Dual-functional materials for interface modifications in solid-state dye-sensitized TiO2 solar cells, Appl. Phys. A, 2004, 79, 65–71.

    Article  CAS  Google Scholar 

  27. S. A. Haque, S. Handa, K. Peter, E. Palomares, M. Thelakkat and J. R. Durrant, Supermolecular Control of Charge Transfer in Dye-Sensitized Nanocrystalline TiO2 Films: Towards a Quantitative Structure-Function Relationship, Angew. Chem., Int. Ed., 2005, 44, 5740–5744.

    Article  CAS  Google Scholar 

  28. F. C. Krebs and M. Biancardo, Dye sensitized photovoltaic cells: Attaching conjugated polymers to zwitterionic ruthenium dyes, Sol. Energy Mater. Sol. Cells, 2006, 90, 142–165.

    Article  CAS  Google Scholar 

  29. P. Buvat, F. Odobel, C. Houarner and E. Blart, Pat. WO2007071792, 2007, 88 pp

  30. C. Houarner-Rassin, E. Blart, P. Buvat and F. Odobel, Improved efficiency of a thiophene linked ruthenium polypyridine complex for dry dye-sensitized solar cells, J. Photochem. Photobiol., A, 2007, 186, 135–142.

    Article  CAS  Google Scholar 

  31. F. Odobel and H. Zabri, Preparations and Characterizations of Bichromophoric Systems Composed of a Ruthenium Polypyridine Complex Connected to a Difluoroborazaindacene or a Zinc Phthalocyanine Chromophore, Inorg. Chem., 2005, 44, 5600–5611.

    Article  CAS  PubMed  Google Scholar 

  32. C. Houarner, E. Blart, P. Buvat and F. Odobel, Ruthenium bis-terpyridine complexes connected to an oligothiophene unit for dry dye-sensitised solar cells, Photochem. Photobiol. Sci., 2005, 4, 200–204.

    Article  CAS  PubMed  Google Scholar 

  33. J. Liu and R. D. McCullough, End Group Modification of Regioregular Polythiophene through Postpolymerization Functionalization, Macromolecules, 2002, 35, 9882–9889.

    Article  CAS  Google Scholar 

  34. M. Jeffries-EL, G. Sauvé and R. D. McCullough, In situ end-group functionalization of regioregular poly(3-alkylthiophene) using the Grignard methathesis polymerization method, Adv. Mater., 2004, 16, 1017–1019.

    Article  CAS  Google Scholar 

  35. J. Liu, T. Tanaka, K. Sivula, A. P. Alivisatos and J. M. J. Frechet, Employing End-Functional Polythiophene To Control the Morphology of Nanocrystal-Polymer Composites in Hybrid Solar Cells, J. Am. Chem. Soc., 2004, 126, 6550–6551.

    Article  CAS  PubMed  Google Scholar 

  36. G. Tourillon and F. Garnier, New electrochemically generated organic, J. Electroanal. Chem., 1982, 135, 173–178.

    Article  CAS  Google Scholar 

  37. F. Guttmann and L. E. Lyons, Organic Semiconductors, J. Wiley and Sons, New York, 1967

    Google Scholar 

  38. D. J. Hurley and Y. Tor, Ru(ii) and Os(ii) Nucleosides and Oligonucleotides: Synthesis and Properties, J. Am. Chem. Soc., 2002, 124, 3749–3762.

    Article  CAS  PubMed  Google Scholar 

  39. A. Barbieri, B. Ventura, L. Flamigni, F. Barigelletti, G. Fuhrmann, P. Bauerle, S. Goeb and R. Ziessel, Binuclear Wirelike Dimers Based on Ruthenium(ii)-Bipyridine Units Linked by Ethynylene-Oligothiophene-Ethynylene Bridges, Inorg. Chem., 2005, 44, 8033–8043.

    Article  CAS  PubMed  Google Scholar 

  40. M. C. Fuertes, G. J. A. A. Soler-Illia, Processing of Macroporous Titania Thin Films: From Multiscale Functional Porosity to Nanocrystalline Macroporous TiO2, Chem. Mater., 2006, 18, 2109–2117.

    Article  CAS  Google Scholar 

  41. H.-s. Yun, K.-c. Miyazawa, H. Zhou, I. Honma and M. Kuwabara, Synthesis of Mesoporous Thin TiO2 Films with Hexagonal Pore Structures Using Triblock Copolymer Templates, Adv. Mater., 2001, 13, 1377–1380.

    Article  CAS  Google Scholar 

  42. A. Hagfeldt, M. Grätzel, Light-Induced Redox Reactions in Nanocrystalline Systems, Chem. Rev., 1995, 95, 49–68.

    Article  CAS  Google Scholar 

  43. K. Matsumoto, M. Fujitsuka, T. Sato, S. Onodera and O. Ito, Photoinduced Electron Transfer from Oligothiophenes/Polythiophene to Fullerenes (C60/C70) in Solution: Comprehensive Study by Nanosecond Laser Flash Photolysis Method, J. Phys. Chem. B, 2000, 104, 11632–11638.

    Article  CAS  Google Scholar 

  44. A. Hagfeldt, M. Grätzel, Molecular Photovoltaics, Acc. Chem. Res., 2000, 33, 269–277.

    Article  CAS  PubMed  Google Scholar 

  45. G. Oskam, B. V. Bergeron, G. J. Meyer and P. C. Searson, Pseudohalogens for Dye-Sensitized TiO2 Photoelectrochemical Cells, J. Phys. Chem. B, 2001, 105, 6867–6873.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houarner-Rassin, C., Blart, E., Buvat, P. et al. Solid-state dye-sensitized TiO2 solar cells based on a sensitizer covalently wired to a hole conducting polymer. Photochem Photobiol Sci 7, 789–793 (2008). https://doi.org/10.1039/b715013j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b715013j

Navigation