Skip to main content
Log in

Solvent effects on the charge transfer excited states of 4-dimethylaminobenzonitrile (DMABN) and 4-dimethylamino-3,5-dimethylbenzonitrile (TMABN) studied by time-resolved infrared spectroscopy: a direct observation of hydrogen bonding interactions

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Time-resolved infrared absorption spectra of the C≡N bands of photoexcited TMABN and DMABN have been measured in non-polar hexane, polar aprotic THF and polar protic butanol with high temporal and spectral resolution (<0.5 ps and 5 cm−1, respectively). In butanol, the intramolecular charge transfer (ICT) state C≡N infrared absorption bands of DMABN and TMABN both develop from an initial singlet into a doublet, demonstrating the co-existence of two charge transfer excited states, one of which is hydrogen-bonded and the other similar to the state formed in aprotic solvents. The ICT C≡N absorption band of TMABN is already strong at the earliest measurement time of 2 ps in THF, hexane, and butanol, indicating prompt population of ICT by a barrierless process, as expected from the pre-twisted structure of this molecule. There are little or no subsequent fast kinetics in hexane and THF but the signal observed in butanol continues to grow substantially at later times, prior to decay, indicating population transfer from a second state excited at 267 nm. No CN absorption band attributable to this state is observed, consistent with it being similar to the LE state of DMABN. The kinetics of the later stages of the hydrogen-bonding of both DMABN and TMABN in butanol takes place on timescales consistent with known values for dipolar solvation relaxation and result in a ratio of the hydrogen-bonded to non-bonded species of ∼3:1 at equilibrium for both molecules. The contrast between the prompt population of the charge transfer state of TMABN in all three solvents and charge transfer rates in DMABN limited to 13 ps−1 in THF and 9 ps−1 in butanol is fully consistent with the TICT description for the ICT state structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Lippert, W. Rettig, V. Bonacic-Koutecky, F. Heisel, J. A. Miehe Adv. Chem. Phys., 1987, 68, 1.

    Google Scholar 

  2. W. Rettig Angew. Chem., Int. Ed. Engl., 1986, 25, 971.

    Google Scholar 

  3. J. Dobkowski, J. Wojcik, W. Kozminski, R. Kolos, J. Waluk, J. Michl J. Am. Chem. Soc., 2002, 124, 2406.

    Google Scholar 

  4. W. M. Kwok, C. Ma, P. Matousek, A. W. Parker, D. Phillips, W. T. Toner, M. Towrie, S. Umapathy J. Phys. Chem. A, 2001, 105, 984.

    Google Scholar 

  5. M. Hashimoto, H. Hamaguchi J. Phys. Chem., 1995, 99, 7875.

    Google Scholar 

  6. C. Chudoba, A. Kummrow, J. Dreyer, J. Stenger, E. T. J. Nibbering, T. Elsaesser, K. A. Zachariasse Chem. Phys. Lett., 1999, 309, 357.

    Google Scholar 

  7. H. J. Okamoto Phys. Chem. A, 2000, 104, 4182.

    Google Scholar 

  8. E. M. Gibson, A. C. Jones, D. Phillips Chem. Phys. Lett., 1987, 136, 454.

    Google Scholar 

  9. T. Kobayashi, M. Futakami, O. Kajimoto Chem. Phys. Lett., 1986, 130, 63.

    Google Scholar 

  10. P. Changenet, P. Plaza, M. M. Martin, Y. H. Meyer J. Phys. Chem. A, 1997, 101, 8186, and references therein.

    Google Scholar 

  11. J. M. Hicks, M. T. Vandersall, E. V. Sitzmann, K. B. Eisenthal Chem. Phys. Lett., 1987, 135, 413.

    Google Scholar 

  12. D. Pilloud, P. Suppan, L. V. Haelst Chem. Phys. Lett., 1987, 137, 130.

    Google Scholar 

  13. R. J. Visser, C. A. G. O. Varma, J. Konijnenberg, P. Bergwerf J. Chem. Soc., Faraday Trans. 2, 1983, 79, 347.

    Google Scholar 

  14. C. Cazeau-Dubroca, S. A. Lyazidi, P. Cambou, A. Peirigua, P. Cazeau, M. Pesquer J. Phys. Chem., 1989, 93, 2347.

    Google Scholar 

  15. O. S. Khalil, R. H. Hofeldt, S. P. McGlynn J. Lumin., 1973, 6, 229.

    Google Scholar 

  16. W. M. Kwok, M. W. George, D. C. Grills, C. Ma, P. Matousek, A. W. Parker, D. Phillips, W. T. Toner, M. Towrie Angew. Chem., Int. Ed., 2003, 42, 1826.

    Google Scholar 

  17. W. Rettig, D. Braun, P. Suppan, E. Vauthey, K. Rotkiewicz, R. Luboradzki, K. Suwinska J. Phys. Chem., 1993, 97, 13500.

    Google Scholar 

  18. A. Heine, R. H. Irmer, D. Stalke, W. Kuhnle, K. A. Zachariasse Acta. Crystallogr., 1994, B50, 363.

    Google Scholar 

  19. K. Rotkiewicz, W. Rubaszewska J. Lumin., 1982, 27, 221.

    Google Scholar 

  20. T. Kobayashi, M. Futakami, O. Kajimoto Chem. Phys. Lett., 1987, 141, 450.

    Google Scholar 

  21. U. Leinhos, W. Kuhnle, K. A. Zachariasse J. Phys. Chem., 1991, 95, 2013.

    Google Scholar 

  22. P. C. M. Weisenborn, A. H. Huizer, C. A. G. O. Varma Chem. Phys., 1989, 133, 437.

    Google Scholar 

  23. W. M. Kwok, C. Ma, M. W. George, D. C. Grills, P. Matousek, A. W. Parker, D. Phillips, W. T. Toner, M. Towrie Phys. Chem. Chem. Phys., 2003, 5, 1043.

    Google Scholar 

  24. M. Towrie, D. C. Grills, J. Dyer, J. A. Weinstein, P. Matousek, R. Barton, P. D. Bailey, N. Subramaniam, W. M. Kwok, C. Ma, D. Phillips, A. W. Parker, M. W. George Appl. Spectrosc., 2003, 57, 367.

    Google Scholar 

  25. Z. R. Grabowski, K. Rotkiewicz, W. Rettig Chem. Rev., 2003, 103, 3899.

    Google Scholar 

  26. W. M. Kwok, C. Ma, D. Phillips, P. Matousek, A. W. Parker, M. Towrie J. Phys. Chem. A, 2000, 104, 4189.

    Google Scholar 

  27. J. Dreyer, A. Kummrow J. Am. Chem. Soc., 2000, 122, 2577.

    Google Scholar 

  28. C. Ma, W. M. Kwok, P. Matousek, A. W. Parker, D. Phillips, W. T. Toner, M. Towrie J. Phys. Chem. A, 2002, 106, 3294.

    Google Scholar 

  29. S.-G. Su, J. D. Simon J. Chem. Phys., 1988, 89, 908.

    Google Scholar 

  30. Y. Wang, K. B. Eisenthal J. Chem. Phys., 1982, 77, 6076.

    Google Scholar 

  31. G. Kohler, G. Grabner, K. Rotkiewicz Chem. Phys., 1993, 173, 275.

    Google Scholar 

  32. C. Ma, W. M. Kwok, P. Matousek, A. W. Parker, D. Phillips, W. T. Toner, M. Towrie J. Phys. Chem. A, 2001, 105, 4648.

    Google Scholar 

  33. S. Woutersen, Y. Mu, G. Stock, P. Hamm Chem. Phys., 2001, 266, 137.

    Google Scholar 

  34. M. L. Horng, J. A. Gardecki, A. Papazyan, M. Maroncelli J. Phys. Chem., 1995, 99, 17311.

    Google Scholar 

  35. P. Matousek, A. W. Parker, M. Towrie, W. T. Toner J. Chem. Phys., 1997, 107, 9807.

    Google Scholar 

  36. K. Iwata, H. Hamaguchi J. Phys. Chem. A, 1997, 101, 632.

    Google Scholar 

  37. A. Hebecker, Untersuchung Schneller intramolekularer, Ladungsuberbertragungsprozesse/vorgelegt von Axel Hebecker, PhD Thesis, 1996, Gottingen, Cuvillier, Zugle, Gottingen, Univ. Diss., 1995, ISBN 3-89588-447-2.

    Google Scholar 

  38. M. I. Nasser Appl. Spectrosc., 1974, 28, 545.

    Google Scholar 

  39. M. Malathi, R. Sabesan, S. Krishnan Curr. Sci., 2004, 86, 838.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Towrie.

Additional information

This paper was published as part of the special issue in honour of David Phillips.

• Present address: Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P.R. China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwok, W.M., Ma, C., George, M.W. et al. Solvent effects on the charge transfer excited states of 4-dimethylaminobenzonitrile (DMABN) and 4-dimethylamino-3,5-dimethylbenzonitrile (TMABN) studied by time-resolved infrared spectroscopy: a direct observation of hydrogen bonding interactions. Photochem Photobiol Sci 6, 987–994 (2007). https://doi.org/10.1039/b708414e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b708414e

Navigation