Skip to main content
Log in

Response to ALA-based PDT in an immortalised normal breast cell line and its counterpart transformed with the Ras oncogene

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Aminolevulinic acid (ALA)-based photodynamic therapy (PDT) has been successfully employed in the treatment of certain tumours. Porphyrins endogenously generated from ALA induce tumour regression after illumination with light of an appropriate wavelength. The aim of this work was to compare porphyrin production from ALA and sensitivity to photodynamic treatment in a tumour/normal cell line pair. We employed the HB4a cell line from normal mammary luminal epithelium and its counterpart transfected with the oncogen H-Ras (VAL/12 Ras). After 3 h of exposure to ALA, HB4a-Ras cells produce a maximum of 150 ng porphyrins per 105 cells whereas HB4a produce 95 ng porphyrins per 105 cells. In addition, HB4a-Ras cells show a plateau of porphyrin synthesis at 1 mM whereas HB4a porphyrins peak at the same concentration, and then decrease quickly. This higher porphyrin synthesis in the tumorigenic cell line does not lead to a higher response to the photodynamic treatment upon illumination. Lethal doses 50, LD50, determined by MTT assay were 0.015 J cm−2 and 0.039 J cm−2 for HB4a and HB4a-Ras respectively after 3 h exposure to 1 mM ALA. The conclusion of this work is that a tumour cell line obtained by transfection of the Ras oncogene, although producing higher porphyrin synthesis from ALA, is more resistant to ALA-PDT than the parental non-tumour line, however the mechanism is not related to photosensitiser accumulation, but very likely to cell survival responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALA:

5-aminolevulinic acid

PDT:

photodynamic therapy

ALAPDT:

ALA-based PDT

PpIX:

protoporphyrin IX

References

  1. T. J. Dougherty, Photodynamic Therapy - new approaches, Semin. Surg. Oncol., 1989, 5, 6–16.

    Article  CAS  Google Scholar 

  2. C. Kelty, N. Brown, M. Reed, R. Ackroyd, The use of 5-aminolaevulinic acid as a photosensitiser in photodynamic therapy and photodiagnosis, Photochem. Photobiol. Sci., 2002, 1, 158–68.

    Article  CAS  Google Scholar 

  3. R. Van Hillesberg, J. Van der Berg, W. Kort, O. Terpstra, J. Wilson, Selective accumulation of endogenously produced porphyrins in a liver metastasis model in rats, Gastroenterology, 1992, 103, 647–51.

    Article  Google Scholar 

  4. N. Navone, C. Polo, A. Frisardi, A. Batlle, Mouse mammary carcinoma PBGase and hydroxymethylbilane synthetase, Comp. Biochem. Physiol. B, 1991, 98, 67–1.

    Article  CAS  Google Scholar 

  5. J. Bos, Ras oncogenes in human cancer: a review, Cancer Res., 1989, 49, 4682–689.

    CAS  PubMed  Google Scholar 

  6. P. Rodriguez-Viciana, O. Tetsu, K. Oda, J. Okada, K. Rauen, F. McCormick, Cancer targets in the Ras pathway, Cold Spring Harbor Symp. Quant. Biol., 2005, 70, 461–467.

    Article  CAS  Google Scholar 

  7. A. C. Stamps, S. C. Davies, J. Burman, M. J. O’Hare, Analysis of proviral integration in human mammary epithelial cell lines immortalised by retroviral infection with a temperature-sensitive SV40 T-antigen construct, Int. J. Cancer, 1994, 57, 1–10.

    Article  Google Scholar 

  8. D. Rusnak, K. Affleck, S. Cockerill, C. Stubberfield, R. Harris, M. Page, The Characterization of Novel, Dual ErbB-2/EGFR, Tyrosine Kinase Inhibitors: Potential Therapy for Cancer, Cancer Res., 2001, 61, 7196–7203.

    CAS  PubMed  Google Scholar 

  9. F. Denizot, R. Lang, Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability, J. Immunol. Methods, 1986, 89, 271–277.

    Article  CAS  Google Scholar 

  10. S. Iinuma, S. S. Farshi, B. Ortel, T. Hasan, A mechanistic study of cellular photoactivation with 5-aminolevulinic acid-induced porphyrins, Br. J. Cancer, 1994, 70, 21–28.

    Article  CAS  Google Scholar 

  11. O. Lowry, N. Rosebrough, L. Farr, R. Randall, Protein measurement with the folin phenol reagents, J. Biol. Chem., 1951, 193, 265–275.

    Article  CAS  Google Scholar 

  12. G. Li, M. Szewczuk, L. Raptis, J. Johnson, G. Weagle, R. Pottier, J. Kennedy, Rodent fibroblast model for studies of response of malignant cells to exogenous 5-aminolevulinic acid, Br. J. Cancer, 1999, 80, 676–84.

    Article  CAS  Google Scholar 

  13. A. Deora, T. Win, B. Vanhaesebroeck, H. M. Lander, A redox-triggered ras-effector interaction. Recruitment of phosphatidylinositol 39-kinase to Ras by redox stress, J. Biol. Chem., 1998, 273, 29923–29928.

    Article  CAS  Google Scholar 

  14. Z. Tong, G. Singh, A. J. Rainbow, The role of the p53 tumor suppressor in the response of human cells to photofrin-mediated photodynamic therapy, Photochem. Photobiol., 2000, 71, 201–210.

    Article  CAS  Google Scholar 

  15. D. Zaak, M. Kriegmair, H. Stepp, H. Stepp, R. Baumgartner, R. Oberneder, P. Schneede, S. Corvin, D. Frimberger, R. Knuchel, A. Hofstetter, Endoscopic detection of transitional cell carcinoma with 5-aminolevulinic acid: results of 1012 fluorescence endoscopies, Urology, 2001, 57, 690–694.

    Article  CAS  Google Scholar 

  16. S. A. Friesen, G. O. Hjortland, S. J. Madsen, H. Hirschberg, O. Engebraten, J. M. Nesland, Q. Peng, 5-Aminolevulinic acid–based photodynamic detection and therapy of brain tumors (review), Int. J. Oncol., 2002, 21, 577–582.

    CAS  PubMed  Google Scholar 

  17. W. J. Piotrowski, J. Marczak, A. Nawrocka, A. Antczak, P. Gorski, Inhalations of 5-ALA in photodynamic diagnosis of bronchial cancer, Monaldi Arch. Chest. Dis., 2004, 61, 86–93.

    Article  CAS  Google Scholar 

  18. P. Baas, M. Triesscheijn, S. Burgers, P. van Pel, F. Stewart, M. Aalders, Fluorescence detection of pleural malignancies using 5-aminolaevulinic acid, Chest, 2006, 129, 718–24.

    Article  CAS  Google Scholar 

  19. Q. Peng, J. Moan, T. Warloe, J. M. Nesland, C. Rimington, Distribution and photosensitizing efficiency of porphyrins induced by application of exogenous 5-aminolevulinic acid in mice bearing mammary carcinoma, Int. J. Cancer, 1992, 52, 433–443.

    Article  CAS  Google Scholar 

  20. A. Casas, H. Fukuda, A. M. Batlle, Tissue distribution and kinetics of endogenous porphyrins synthesized after topical application of ALA in different vehicles, Br. J. Cancer, 1999, 81, 13–18.

    Article  CAS  Google Scholar 

  21. J. Moan, L. W. Ma, V. Iani, On the pharmacokinetics of topically applied 5-aminolevulinic acid and two of its esters, Int. J. Cancer, 2001, 92, 139–143.

    Article  CAS  Google Scholar 

  22. K. Svanberg, D. L. Liu, I. Wang, S. Andersson-Engels, U. Stenram, S. Svanberg, Photodynamic therapy using intravenous delta-aminolaevulinic acid-induced protoporphyrin IX sensitisation in experimental hepatic tumours in rats, Br. J. Cancer, 1996, 74, 1526–1533.

    Article  CAS  Google Scholar 

  23. Z. Ji, G. Yang, V. Vasovic, B. Cunderlikova, Z. Suo, J. Nesland, Q. Peng, Subcellular localization pattern of protoporphyrin IX is an important determinant for its photodynamic efficiency of human carcinoma and normal cell lines, J. Photochem. Photobiol., B, 2006, 84, 213–220.

    Article  CAS  Google Scholar 

  24. K. Lang, K. Bolsen, W. Stahl, T. Ruzicka, H. Sies, P. Lehmann, C. Fritsch, The 5-aminolevulinic acid-induced porphyrin biosynthesis in benign and malignant cells of the skin, J. Photochem. Photobiol., B, 2001, 65, 29–34.

    Article  CAS  Google Scholar 

  25. K. Rittenhouse-Diakun, H. Van Leengoed, J. Morgan, E. Hryhorenko, G. Paszkiewicz, J. E. Whitaker, A. R. Oseroff, The role of transferrin receptor (CD71) in photodynamic therapy of activated and malignant lymphocytes using the heme precursor delta-aminolevulinic acid (ALA), Photochem. Photobiol., 1995, 61, 523–528.

    Article  CAS  Google Scholar 

  26. D. Grebenova, H. Cajthamlova, J. Bartosova, J. Marinov, H. Klamova, O. Fuchs, Z. Hrkal, Selective destruction of leukaemic cells by photo-activation of 5-aminolaevulinic acid-induced protoporphyrin-IX, J. Photochem. Photobiol., B, 1998, 47, 74–81.

    Article  CAS  Google Scholar 

  27. A. Casas, C. Perotti, H. Fukuda, A. M. Batlle, Photodynamic therapy of activated and resting lymphocytes and its antioxidant adaptive response, Lasers Med. Sci., 2002, 17, 42–50.

    Article  CAS  Google Scholar 

  28. E. Hryhorenko, A. Oseroff, J. Morgan, K. Rittenhouse-Diakun, Deletion of alloantigen-activated cells by aminolevulinic acid–based photodynamic therapy, Photochem. Photobiol., 1999, 69, 560–565.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alcira Batlle.

Additional information

Dedicated to the memory of Dr Susana Afonso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodriguez, L., DiVenosa, G., Batlle, A. et al. Response to ALA-based PDT in an immortalised normal breast cell line and its counterpart transformed with the Ras oncogene. Photochem Photobiol Sci 6, 1306–1310 (2007). https://doi.org/10.1039/b704235c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b704235c

Navigation