Skip to main content

Advertisement

Log in

Changes in tropospheric composition and air quality due to stratospheric ozone depletion and climate change

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

It is well-understood that reductions in air quality play a significant role in both environmental and human health. Interactions between ozone depletion and global climate change will significantly alter atmospheric chemistry which, in turn, will cause changes in concentrations of natural and human-made gases and aerosols. Models predict that tropospheric ozone near the surface will increase globally by up to 10 to 30 ppbv (33 to 100% increase) during the period 2000 to 2100. With the increase in the amount of the stratospheric ozone, increased transport from the stratosphere to the troposphere will result in different responses in polluted and unpolluted areas. In contrast, global changes in tropospheric hydroxyl radical (OH) are not predicted to be large, except where influenced by the presence of oxidizable organic matter, such as from large-scale forest fires. Recent measurements in a relatively clean location over 5 years showed that OH concentrations can be predicted by the intensity of solar ultraviolet radiation. If this relationship is confirmed by further observations, this approach could be used to simplify assessments of air quality. Analysis of surface-level ozone observations in Antarctica suggests that there has been a significant change in the chemistry of the boundary layer of the atmosphere in this region as a result of stratospheric ozone depletion. The oxidation potential of the Antarctic boundary layer is estimated to be greater now than before the development of the ozone hole. Recent modeling studies have suggested that iodine and iodine-containing substances from natural sources, such as the ocean, may increase stratospheric ozone depletion significantly in polar regions during spring. Given the uncertainty of the fate of iodine in the stratosphere, the results may also be relevant for stratospheric ozone depletion and measurements of the influence of these substances on ozone depletion should be considered in the future. In agreement with known usage and atmospheric loss processes, tropospheric concentrations of HFC-134a, the main human-made source of trifluoroacetic acid (TFA), is increasing rapidly. As HFC-134a is a potent greenhouse gas, this increasing concentration has implications for climate change. However, the risks to humans and the environment from substances, such as TFA, produced by atmospheric degradation of hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs) are considered minimal. Perfluoropolyethers, commonly used as industrial heat transfer fluids and proposed as chlorohydrofluorocarbon (CHFC) substitutes, show great stability to chemical degradation in the atmosphere. These substances have been suggested as substitutes for CHFCs but, as they are very persistent in the atmosphere, they may be important contributors to global warming. It is not known whether these substances will contribute significantly to global warming and its interaction with ozone depletion but they should be considered for further evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization, Health Aspects of Air Pollution, World Health Organization, Regional Office for Europe Report No. E83080, Copenhagen, Denmark, June 2004, p. 30. http://www.euro.who.int/document/E83080.pdf#search=%22ozone%20human%20health%20review%22

    Google Scholar 

  2. European Environment Agency, Europe’s Environment: The Third Assessment, European Environment Agency Report No. 10, Copenhagen, May 12, 2003, p. 334. http://reports.eea.eu.int/environmental_assessment_report_2003_10/en/kiev_eea_low.pdf

  3. D. M. Stieb, R. T. Burnett, R. C. Beveridge and J. R. Brook, Association between ozone and asthma emergency department visits in Saint John, New Brunswick, Canada Environ. Health Perspect. 1996 104 1354–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. C. P. Weisel, R. P. Cody and P. J. Lioy, Relationship between summertime ambient ozone levels and emergency department visits for asthma in central New Jersey Environ. Health Perspect. 1995 103 97–102

    PubMed  PubMed Central  Google Scholar 

  5. J. R. Stedman, H. R. Anderson, R. W. Atkinson and R. L. Maynard, Emergency hospital admissions for respiratory disorders attributable to summer time ozone episodes in Great Britain Thorax 1997 52 958–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. J. Fuhrer, L. Skarby and M. R. Ashmore, Critical levels for ozone effects on vegetation in Europe Environ. Pollut. 1997 97 91–106

    Article  CAS  PubMed  Google Scholar 

  7. R. Rinnan and T. Holopainen, Ozone effects on the ultrastructure of peatland plants: Sphagnum mosses Vaccinium oxycoccus, Andromeda polifolia and Eriophorum vaginatum Ann. Bot. 2004 94 623–634

    Article  PubMed  PubMed Central  Google Scholar 

  8. K. R. Solomon, X. Tang, S. R. Wilson, P. Zanis and A. F. Bais, Changes in tropospheric composition and air quality due to stratospheric ozone depletion Photochem. Photobiol. Sci. 2003 2 62–67

    Article  CAS  PubMed  Google Scholar 

  9. X. Tang, S. Madronich, T. Wallington and D. Calamari, Changes in tropospheric composition and air quality J. Photochem. Photobiol., B 1998 46 83–95

    Article  CAS  Google Scholar 

  10. A. Hofzumahaus, T. Brauers, U. Platt and J. Callies, Latitudinal variation of measured O3 photolysis frequencies J(O1D) and primary OH production rates over the Atlantic ocean between 50 °N and 30 °S J. Atmos. Chem. 1992 15 283–298

    Article  CAS  Google Scholar 

  11. H. Liao, W. T. Chen and J. H. Seinfeld, Role of climate change in global predictions of future tropospheric ozone and aerosols J. Geophys. Res., [Atmos.] 2006 111 D12304

    Article  CAS  Google Scholar 

  12. D. T. Shindell and G. A. Schmidt, Southern Hemisphere climate response to ozone changes and greenhouse gas increases Geophys. Res. Lett. 2004 31 DOI:10.1029/2004GL020724

    Google Scholar 

  13. J. A. Pyle, P. Braesicke and G. Zeng, Dynamical variability in the modelling of chemistry-climate interactions Faraday Discuss. 2005 130 27–39

    Article  CAS  PubMed  Google Scholar 

  14. A. C. Fusco and J. A. Logan, Analysis of 1970-1995 trends in tropospheric ozone at Northern Hemisphere midlatitudes with the GEOS-CHEM model J. Geophys. Res., [Atmos.] 2003 108 4449–4449

    Article  CAS  Google Scholar 

  15. P. J. Crutzen, M. G. Lawrence and U. Poschl, On the background photochemistry of tropospheric ozone Tellus Ser. A 1999 51 123–146

    Article  Google Scholar 

  16. J. Lelieveld and F. J. Dentener, What controls tropospheric ozone? J. Geophys. Res., [Atmos.] 2000 105 3531–3551

    Article  CAS  Google Scholar 

  17. J. Fishman, J. K. Creilson, A. E. Wozniak and P. J. Crutzen, Interannual variability of stratospheric and tropospheric ozone determined from satellite measurements J. Geophys. Res., [Atmos.] 2005 110 DOI:10.1029/2005JD005868

    Google Scholar 

  18. V. Ramaswamy, M. D. Schwarzkopf, W. J. Randel, B. D. Santer, B. J. Soden and G. L. Stenchikov, Anthropogenic and natural influences in the evolution of lower stratospheric cooling Science 2006 311 1138–1141

    Article  CAS  PubMed  Google Scholar 

  19. K. Sudo, M. Takahashi and H. Akimoto, Future changes in stratosphere-troposphere exchange and their impacts on future tropospheric ozone simulations Geophys. Res. Lett. 2003 30 DOI:10.1029/2003GL018526

    Google Scholar 

  20. S. P. Sander, B. J. Finlayson-Pitts, R. R. Friedl, D. M. Golden, R. E. Huie, C. E. Kolb, M. J. Kurylo, M. J. Molina, G. K. Moortgat, V. L. Orkin and A. R. Ravishankara, Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies Evaluation Number 14, Jet Propulsion Laboratory Report JPL Publication 02-25, Pasadena, CA, 2003, p. 334. http://jpldataeval.jpl.nasa.gov/pdf/JPL_02-25_rev02.pdf

    Google Scholar 

  21. R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi and J. Troe, Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I-gas phase reactions of Ox, HOx, NOx and SOx species Atmos. Chem. Phys. 2004 4 1461–1738

    Article  CAS  Google Scholar 

  22. S. P. Sander, R. R. Friedl, A. R. Ravishankara, D. M. Golden, C. E. Kolb, M. J. Kurylo, M. J. Molina, G. K. Moortgat, H. Keller-Rudek, B. J. Finlayson-Pitts, P. H. Wine, R. E. Huie and V. L. Orkin, Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies Evaluation Number 15, Jet Propulsion Laboratory Report No. JPL 06-2, Pasadena, CA, 2006, p. 522. http://jpldataeval.jpl.nasa.gov/pdf/JPL_15_AllInOne.pdf

  23. R. G. Prinn, J. Huang, R. F. Weiss, D. M. Cunnold, P. J. Fraser, P. G. Simmonds, A. McCulloch, C. Harth, S. Reimann, P. Salameh, S. O’Doherty, R. H. J. Wang, L. W. Porter, B. R. Miller and P. B. Krummel, Evidence for variability of atmospheric hydroxyl radicals over the past quarter century Geophys. Res. Lett. 2005 32 DOI:10.1029/2004GL022228

    Google Scholar 

  24. R. L. McKenzie, P. J. Aucamp, A. F. Bais, L. O. Björn and M. Ilyas, Changes in biologically active ultraviolet radiation reaching the Earth’s surface Photochem. Photobiol. Sci. 2007 DOI:10.1039/b700017k

    Google Scholar 

  25. E. Eckstein, D. Perner, C. Bruhl and T. Trautmann, A new actinic flux 4 pi-spectroradiometer: instrument design and application to clear sky and broken cloud conditions Atmos. Chem. Phys. 2003 3 1965–1979

    Article  CAS  Google Scholar 

  26. A. Hofzumahaus, A. Kraus and M. Muller, Solar actinic flux spectroradiometry: a technique for measuring photolysis frequencies in the atmosphere Appl. Opt. 1999 38 4443–4460

    Article  CAS  PubMed  Google Scholar 

  27. S. Kazadzis, C. Topaloglou, A. F. Bais, M. Blumthaler, D. Balis, A. Kazantzidis and B. Schallhart, Actinic flux and (O 1D) photolysis frequencies retrieved from spectral measurements of irradiance at Thessaloniki, Greece Atmos. Chem. Phys. 2004 4 2215–2226

    Article  CAS  Google Scholar 

  28. B. Schallhart, A. Huber and M. Blumthaler, Semi-empirical method for the conversion of spectral UV global irradiance data into actinic flux Atmos. Environ. 2004 38 4341–4346

    Article  CAS  Google Scholar 

  29. A. Kylling, A. R. Webb, A. F. Bais, M. Blumthaler, R. Schmitt, S. Thiel, A. Kazantzidis, R. Kift, M. Misslbeck, B. Schallhart, J. Schreder, C. Topaloglou, S. Kazadzis and J. Rimmer, Actinic flux determination from measurements of irradiance J. Geophys. Res., [Atmos.] 2003 108 DOI:10.1029/2002JD003236

    Google Scholar 

  30. A. R. Webb, R. Kift, S. Thiel and M. Blumthaler, An empirical method for the conversion of spectral UV irradiance measurements to actinic flux data Atmos. Environ. 2002 36 4397–4404

    Article  CAS  Google Scholar 

  31. R. McKenzie, P. Johnston, A. Hofzumahaus, A. Kraus, S. Madronich, C. Cantrell, J. Calvert and R. Shetter, Relationship between photolysis frequencies derived from spectroscopic measurements of actinic fluxes and irradiances during the IPMMI campaign J. Geophys. Res., [Atmos.] 2002 107 DOI:10.1029/2001JD000601

    Google Scholar 

  32. C. Topaloglou, S. Kazadzis, A. F. Bais, M. Blumthaler, B. Schallhart and D. Balis, NO2 and HCHO photolysis frequencies from irradiance measurements in Thessaloniki, Greece Atmos. Chem. Phys. 2005 5 1645–1653

    Article  CAS  Google Scholar 

  33. K. Takahashi, S. Hayashi, T. Suzuki and Y. Matsumi, Accurate determination of the absolute quantum yield for O(1D) formation in the photolysis of ozone at 308 nm J. Phys. Chem. A 2004 108 10497–10501

    Article  CAS  Google Scholar 

  34. A. Hofzumahaus, B. L. Lefer, P. S. Monks, S. R. Hall, A. Kylling, B. Mayer, R. E. Shetter, W. Junkermann, A. Bais, J. G. Calvert, C. A. Cantrell, S. Madronich, G. D. Edwards, A. Kraus, M. Muller, B. Bohn, R. Schmitt, P. Johnston, R. McKenzie, G. J. Frost, E. Griffioen, M. Krol, T. Martin, G. Pfister, E. P. Roth, A. Ruggaber, W. H. Swartz, S. A. Lloyd and M. Van, Weele, Photolysis frequency of O3 to O(1D): Measurements and modeling during the International Photolysis Frequency Measurement and Modeling Intercomparison (IPMMI) J. Geophys. Res., [Atmos.] 2004 109 DOI:10.1029/2003JD004333

    Google Scholar 

  35. A. F. Bais, S. Madronich, J. Crawford, S. R. Hall, B. Mayer, M. van Weele, J. Lenoble, J. G. Calvert, C. A. Cantrell, R. E. Shetter, A. Hofzumahaus, P. Koepke, P. S. Monks, G. Frost, R. McKenzie, N. Krotkov, A. Kylling, W. H. Swartz, S. Lloyd, G. Pfister, T. J. Martin, E. P. Roeth, E. Griffioen, A. Ruggaber, M. Krol, A. Kraus, G. D. Edwards, M. Mueller, B. L. Lefer, P. Johnston, H. Schwander, D. Flittner, B. G. Gardiner, J. Barrick and R. Schmitt, International Photolysis frequency Measurement and Model Intercomparison (IPMMI): Spectral actinic solar flux measurements and modeling J. Geophys. Res., [Atmos.] 2003 108 DOI:10.1029/2002JD002891

    Google Scholar 

  36. D. J. Creasey, G. E. Evans, D. E. Heard and J. D. Lee, Measurements of OH and HO2 concentrations in the Southern Ocean marine boundary layer J. Geophys. Res., [Atmos.] 2003 108 DOI:10.1029/2002JD003206

    Google Scholar 

  37. J. R. Olson, J. H. Crawford, G. Chen, A. Fried, M. J. Evans, C. E. Jordan, S. T. Sandholm, D. D. Davis, B. E. Anderson, M. A. Avery, J. D. Barrick, D. R. Blake, W. H. Brune, F. L. Eisele, F. Flocke, H. Harder, D. J. Jacob, Y. Kondo, B. L. Lefer, M. Martinez, R. L. Mauldin, G. W. Sachse, R. E. Shetter, H. B. Singh, R. W. Talbot and D. Tan, Testing fast photochemical theory during TRACE-P based on measurements of OH, HO2, and CH2O J. Geophys. Res., [Atmos.] 2004 109 DOI:10.1029/2003JD004278

    Google Scholar 

  38. A. Kylling, A. R. Webb, R. Kift, G. P. Gobbi, L. Ammannato, F. Barnaba, A. Bais, S. Kazadzis, M. Wendisch, E. Jakel, S. Schmidt, A. Kniffka, S. Thiel, W. Junkermann, M. Blumthaler, R. Silbernagl, B. Schallhart, R. Schmitt, B. Kjeldstad, T. M. Thorseth, R. Scheirer and B. Mayer, Spectral actinic flux in the lower troposphere: measurement and 1-D simulations for cloudless, broken cloud and overcast situations Atmos. Chem. Phys. 2005 5 1975–1997

    Article  CAS  Google Scholar 

  39. W. F. Barnard, V. K. Saxena, B. N. Wenny and J. J. DeLuisi, Daily surface UV exposure and its relationship to surface pollutant measurements J. Air Waste Manage. 2003 53 237–245

    Article  CAS  Google Scholar 

  40. J. Kleffmann, T. Gavriloaiei, A. Hofzumahaus, F. Holland, R. Koppmann, L. Rupp, E. Schlosser, M. Siese and A. Wahner, Daytime formation of nitrous acid: A major source of OH radicals in a forest Geophys. Res. Lett. 2005 32 L05818 DOI:10.1029/2005GL022524

    Article  CAS  Google Scholar 

  41. R. G. Prinn, R. F. Weiss, B. R. Miller, J. Huang, F. N. Alyea, D. M. Cunnold, P. J. Fraser, D. E. Hartley and P. G. Simmonds, Atmospheric trends and lifetime of CH3CCl3 and global OH concentrations Science 1995 269 187–192

    Article  CAS  PubMed  Google Scholar 

  42. R. G. Prinn, J. Huang, R. F. Weiss, D. M. Cunnold, P. J. Fraser, P. G. Simmonds, A. McCulloch, C. Harth, P. Salameh, S. O’Doherty, R. H. J. Wang, L. Porter and B. R. Miller, Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades Science 2001 292 1882–1888

    Article  CAS  PubMed  Google Scholar 

  43. M. C. Krol, J. Lelieveld, D. E. Oram, G. A. Sturrock, S. A. Penkett, C. A. M. Brenninkmeijer, V. Gros, J. Williams and H. A. Scheeren, Continuing emissions of methyl chloroform from Europe Nature 2003 421 131–135

    Article  CAS  PubMed  Google Scholar 

  44. S. Reimann, A. J. Manning, P. G. Simmonds, D. M. Cunnold, R. H. J. Wang, J. L. Li, A. McCulloch, R. G. Prinn, J. Huang, R. F. Weiss, P. J. Fraser, S. O’Doherty, B. R. Greally, K. Stemmler, M. Hill and D. Folini, Low European methyl chloroform emissions inferred from long-term atmospheric measurements Nature 2005 433 506–508

    Article  CAS  PubMed  Google Scholar 

  45. D. B. Millet and A. H. Goldstein, Evidence of continuing methylchloroform emissions from the United States Geophys. Res. Lett. 2004 31 DOI:10.1029/2004GL021932

  46. D. B. Millet and A. H. Goldstein, Correction to “Evidence of continuing methylchloroform emissions from the United States” Geophys. Res. Lett. 2004 31 DOI:10.1029/2004GL021932

  47. P. O. Wennberg, S. Peacock, J. T. Randerson and R. Bleck, Recent changes in the air-sea gas exchange of methyl chloroform Geophys. Res. Lett. 2004 31 DOI:10.1029/2004GL020476

  48. M. Krol and J. Lelieveld, Can the variability in tropospheric OH be deduced from measurements of 1,1,1-trichloroethane (methyl chloroform)? J. Geophys. Res., [Atmos.] 2003 108 DOI:10.1029/2002JD002423

    Google Scholar 

  49. S. Bekki, K. S. Law and J. A. Pyle, Effect of ozone depletion on atmospheric CH4 and CO concentrations Nature 1994 371 595–597

    Article  CAS  Google Scholar 

  50. J. S. Fuglestvedt, J. E. Jonson and I. S. A. Isaksen, Effects of reductions in stratospheric ozone on tropospheric chemistry through changes in photolysis rates Tellus Ser. B 1994 46 172–192

    Google Scholar 

  51. M. R. Manning, D. C. Lowe, R. C. Moss, G. E. Bodeker and W. Allan, Short-term variations in the oxidizing power of the atmosphere Nature 2005 436 1001–1004

    Article  CAS  PubMed  Google Scholar 

  52. F. Rohrer and H. Berresheim, Strong correlation between level of tropospheric hydroxyl radicals and solar ultraviolet radiation Nature 2006 442 184–187

    Article  CAS  PubMed  Google Scholar 

  53. P. O. Wennberg, Radicals follow the sun Nature 2006 442 145–146

    Article  CAS  PubMed  Google Scholar 

  54. ACCENT Leeds Expert meeting 2005, Free-Radicals in the troposphere: their measurement, interpretation of field data, and future directions, Report 6/2006, ed. D. E. Heard, ACCENT, Urbino, 2006

  55. C. M. Spivakovsky, J. A. Logan, S. A. Montzka, Y. J. Balkanski, M. Foreman-Fowler, D. B. A. Jones, L. W. Horowitz, A. C. Fusco, C. A. M. Brenninkmeijer, M. J. Prather, S. C. Wofsy and M. B. McElroy, Three-dimensional climatological distribution of tropospheric OH: Update and evaluation J. Geophys. Res., [Atmos.] 2000 105 8931–8980

    Article  CAS  Google Scholar 

  56. W. J. Bloss, M. J. Evans, J. D. Lee, R. Sommariva, D. E. Heard and M. J. Pilling, The oxidative capacity of the troposphere: Coupling of field measurements of OH and a global chemistry transport model Faraday Discuss. 2005 130 425–436

    Article  CAS  PubMed  Google Scholar 

  57. K. Murazaki and P. Hess, How does climate change contribute to surface ozone change over the United States? J. Geophys. Res., [Atmos.] 2006 111 D05301 DOI:10.1029/2005JD005873

    Article  CAS  Google Scholar 

  58. I. S. A. Isaksen, C. Zerefos, K. Kourtidis, C. Meleti, S. B. Dalsoren, J. K. Sundet, A. Grini, P. Zanis and D. Balis, Tropospheric ozone changes at unpolluted and semipolluted regions induced by stratospheric ozone changes J. Geophys. Res., [Atmos.] 2005 110 DOI:10.1029/2004JD004618

    Google Scholar 

  59. Y. Kondo, K. Nakamura, G. Chen, N. Takegawa, M. Koike, Y. Miyazaki, K. Kita, J. Crawford, M. Ko, D. R. Blake, S. Kawakami, T. Shirai, B. Liley, Y. Wang and T. Ogawa, Photochemistry of ozone over the western Pacific from winter to spring J. Geophys. Res., [Atmos.] 2004 109 DOI:10.1029/2004JD004871

    Google Scholar 

  60. J. F. Lamarque, P. Hess, L. Emmons, L. Buja, W. Washington and C. Granier, Tropospheric ozone evolution between 1890 and 1990 J. Geophys. Res., [Atmos.] 2005 110 DOI:10.1029/2004JD005537

    Google Scholar 

  61. M. Gauss, G. Myhre, G. Pitari, M. J. Prather, I. S. A. Isaksen, T. K. Berntsen, G. P. Brasseur, F. J. Dentener, R. G. Derwent, D. A. Hauglustaine, L. W. Horowitz, D. J. Jacob, M. Johnson, K. S. Law, L. J. Mickley, J. F. Muller, P. H. Plantevin, J. A. Pyle, H. L. Rogers, D. S. Stevenson, J. K. Sundet, M. van Weele and O. Wild, Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere J. Geophys. Res., [Atmos.] 2003 108 DOI:10.1029/2002JD002624

    Google Scholar 

  62. D. J. Lary and D. E. Shallcross, Central role of carbonyl compounds in atmospheric chemistry J. Geophys. Res., [Atmos.] 2000 105 19771–19778

    Article  CAS  Google Scholar 

  63. J. M. Roberts, F. Flocke, G. Chen, J. de Gouw, J. S. Holloway, G. Hubler, J. A. Neuman, D. K. Nicks, J. B. Nowak, D. D. Parrish, T. B. Ryerson, D. T. Sueper, C. Warneke and F. C. Fehsenfeld, Measurement of peroxycarboxylic nitric anhydrides (PANs) during the ITCT 2K2 aircraft intensive experiment J. Geophys. Res., [Atmos.] 2004 109 DOI:10.1029/2004JD004960

    Google Scholar 

  64. M. A. Blitz, D. E. Heard, M. J. Pilling, S. R. Arnold and M. P. Chipperfield, Pressure and temperature-dependent quantum yields for the photodissociation of acetone between 279 and 327.5 nm Geophys. Res. Lett. 2004 31 DOI:10.1029/2003GL018793

    Google Scholar 

  65. M. T. B. Romero, M. A. Blitz, D. E. Heard, M. J. Pilling, B. Price, P. W. Seakins and L. M. Wang, Photolysis of methylethyl, diethyl and methylvinyl ketones and their role in the atmospheric HOx budget Faraday Discuss. 2005 130 73–88

    Article  CAS  PubMed  Google Scholar 

  66. S. R. Arnold, M. P. Chipperfield and M. A. Blitz, A three-dimensional model study of the effect of new temperature-dependent quantum yields for acetone photolysis J. Geophys. Res., [Atmos.] 2005 110 DOI:10.1029/2005JD005998

  67. R. C. Schnell, S. Liu, S. J. Oltmans, R. S. Stone, D. J. Hofmann, E. G. Dutton, T. Deshler, W. T. Sturges, J. W. Harder, S. D. Sewell, M. Trainer and J. M. Harris, Decrease of summer tropospheric ozone concentrations in Antarctica Nature 1991 351 726–729

    Article  CAS  Google Scholar 

  68. A. E. Jones and E. W. Wolff, An analysis of the oxidation potential of the South Pole boundary layer and the influence of stratospheric ozone depletion J. Geophys. Res., [Atmos.] 2003 108 DOI:10.1029/2003JD003379

  69. M. M. Frey, R. W. Stewart, J. R. McConnell and R. C. Bales, Atmospheric hydroperoxides in West Antarctica: Links to stratospheric ozone and atmospheric oxidation capacity J. Geophys. Res., [Atmos.] 2005 110 DOI:10.1029/2005JD006110

  70. X. X. Tie, S. Madronich, S. Walters, D. P. Edwards, P. Ginoux, N. Mahowald, R. Y. Zhang, C. Lou and G. Brasseur, Assessment of the global impact of aerosols on tropospheric oxidants J. Geophys. Res., [Atmos.] 2005 110 DOI:10.1029/2004JD005359

  71. M. P. Sulbaek Andersen, O. J. Nielsen, M. D. Hurley, J. C. Ball, T. J. Wallington, J. E. Stevens, J. W. Martin, D. A. Ellis and S. A. Mabury, Atmospheric chemistry of n-CxF2x + 1CHO (x = 1, 3, 4): Reaction with Cl atoms, OH radicals and IR spectra of CxF2x + 1C(O)O2NO2J. Phys. Chem. A 2004 108 5189–5196

    Article  CAS  Google Scholar 

  72. T. J. Wallington, M. D. Hurley, J. Xia, D. J. Wuebbles, S. Sillman, A. Ito, J. E. Penner, D. A. Ellis, J. Martin, S. A. Mabury, O. J. Nielsen and S. A. M. P, Formation of C7F15COOH (PFOA) and other perfluorocarboxylic acids during the atmospheric oxidation of 8:2 fluorotelomer alcohol Environ. Sci. Technol. 2006 40 924–930

    Article  CAS  PubMed  Google Scholar 

  73. M. Houde, T. A. D. Bujas, J. Small, R. S. Wells, P. A. Fair, G. D. Bossart, K. R. Solomon and D. C. G. Muir, Biomagnification of perfluoroalkyl compounds in the bottlenose dolphin (Tursiops truncatus) food web Environ. Sci. Technol. 2006 40 4138–4144

    Article  CAS  PubMed  Google Scholar 

  74. M. Houde, J. W. Martin, R. J. Letcher, K. R. Solomon and D. C. G. Muir, Biological monitoring of polyfluoroalkyl compounds: A review Environ. Sci. Technol. 2006 40 3463–3473

    Article  CAS  PubMed  Google Scholar 

  75. C. Lau, J. L. Butenhoff and J. M. Rogers, The developmental toxicity of perfluoroalkyl acids and their derivatives Toxicol. Appl. Pharmacol. 2004 198 231–241

    Article  CAS  PubMed  Google Scholar 

  76. S. O’Doherty, D. M. Cunnold, A. Manning, B. R. Miller, R. H. J. Wang, P. B. Krummel, P. J. Fraser, P. G. Simmonds, A. McCulloch, R. F. Weiss, P. Salameh, L. W. Porter, R. G. Prinn, J. Huang, G. Sturrock, D. Ryall, R. G. Derwent and S. A. Montzka, Rapid growth of hydrofluorocarbon 134a and hydrochlorofluorocarbons 141b, 142b, and 22 from Advanced Global Atmospheric Gases Experiment (AGAGE) observations at Cape Grim, Tasmania, and Mace Head, Ireland J. Geophys. Res., [Atmos.] 2004 109 DOI:10.1029/2003JD004277

  77. IPCC, Safeguarding the Ozone Layer and the Global Climate System. Issues Related to Hydrofluorocarbons and Perfluorocarbons, Intergovernmental Panel on Climate Change Technology and Economic Assessment Panel Report, Nairobi, Kenya, April 2005, p. 88. http://www.ipcc.ch/activity/specialrprt05/IPCC_low_en.pdf

  78. B. F. Scott, C. Spencer, J. W. Martin, R. Barra, H. A. Bootsma, K. C. Jones, A. E. Johnston and D. C. Muir, Comparison of haloacetic acids in the environment of the Northern and Southern Hemispheres Environ. Sci. Technol. 2005 39 8664–8670

    Article  CAS  PubMed  Google Scholar 

  79. O. J. Nielsen, B. F. Scott, C. Spencer, T. J. Wallington and J. C. Ball, Trifluoroacetic acid in ancient freshwater Atmos. Environ. 2001 35 2799–2801

    Article  CAS  Google Scholar 

  80. B. F. Scott, R. W. Macdonald, K. Kannan, A. Fisk, A. Witter, N. Yamashita, L. Durham, C. Spencer and D. C. Muir, Trifluoroacetate profiles in the Arctic, Atlantic, and Pacific Oceans Environ. Sci. Technol. 2005 39 6555–6560

    Article  CAS  PubMed  Google Scholar 

  81. D. Zehavi and J. N. Seiber, An analytical method for trifluoroacetic acid in water and air samples using headspace gas chromatographic determination of the methyl ester Anal. Chem. 1996 68 3450–3459

    Article  CAS  PubMed  Google Scholar 

  82. M. L. Hanson and K. R. Solomon, Haloacetic acids in the aquatic environment II: Ecological risk assessment for aquatic macrophytes Arch. Environ. Contam. Toxicol. 2004 130 385–401

    CAS  Google Scholar 

  83. J. Zhang, Y. Zhang, J. Li, J. Hu, P. Ye and Z. Zeng, Monitoring of trifluoroacetic acid concentration in environmental waters in China Water Res. 2005 39 1331–9

    Article  CAS  PubMed  Google Scholar 

  84. H. Frank, E. H. Christoph, O. Holm-Hansen and J. L. Bullister, Trifluoroacetate in ocean waters Environ. Sci. Pollut. Res. Int. 2002 36 12–15

    CAS  Google Scholar 

  85. AFEAS, Production and Sales of Flurorocarbons. Production, Sales, and Atmospheric Release of Fluorocarbons Through 2003, Alternative Fluorocarbons Environmental Acceptability Study Report, Arlington, VA, USA, 2005. http://www.afeas.org/production_and_sales.html

  86. A. G. Berends, J. C. Boutonnet, C. G. de Rooij and R. S. Thompson, Toxicity of trifluoroacetate to aquatic organisms Environ. Toxicol. Chem. 1999 18 1053–1059

    Article  CAS  Google Scholar 

  87. M. L. Hanson and K. R. Solomon, Haloacetic acids in the aquatic environment I: Macrophyte toxicity Arch. Environ. Contam. Toxicol. 2004 130 371–383

    CAS  Google Scholar 

  88. M. L. Hanson and K. R. Solomon, New technique for estimating thresholds of toxicity in ecological risk assessment Environ. Sci. Technol. 2002 36 3257–3264

    Article  CAS  PubMed  Google Scholar 

  89. C. J. Young, M. D. Hurley, T. J. Wallington and S. A. Mabury, Atmospheric lifetime and global warming potential of a perfluoropolyether Environ. Sci. Technol. 2006 40 2242–2246

    Article  CAS  PubMed  Google Scholar 

  90. UNEP, Case Study #16. Preparation of perfluoropolyether diols with high functionality (difunctional molecules content 99%), UNEP, Process Agents Task Force, http://www.unep.org/ozone/teap/Reports/PATF/PACS16R0.pdf, accessed September 19, 2005

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper was published as part of the 2006 UNEP assessment on environmental effects of ozone depletion and its interactions with climate change.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, S.R., Solomon, K.R. & Tang, X. Changes in tropospheric composition and air quality due to stratospheric ozone depletion and climate change. Photochem Photobiol Sci 6, 301–310 (2007). https://doi.org/10.1039/b700022g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b700022g

Navigation