Skip to main content

Advertisement

Log in

Recognition of various biomolecules by the environment-sensitive spectral responses of hypocrellin B

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In this work, the spectral responses of hypocrellin B (HB) to the microenvironments of various biomolecules were studied, with human serum albumin (HSA), bovine serum albumin (BSA) and ovalbumin (OVA) used as the models for proteins, sodium alginate (SOA) and hyaluronan (HYA) for polysaccharides and liposomes for lipid membranes. Generally, compared to those in aqueous solution, the absorbance and fluorescence of HB were all strengthened in the model systems except for the fluorescence in HYA. Specially, according to the spectral responses of HB, the microenvironments in biomolecules and liposomes could be set in a sequence of hydrophobic grades, i.e., liposomes > proteins > polysaccharides. Further, RF/A, a parameter defined as the ratio of the fluorescence intensity to the absorbance, was proposed to identify the microenvironment quantitatively. It was found that the RF/A could not only distinguish various types of biomolecules but also identify specific binding from nonspecific binding to proteins or polysaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Kraus, W. J. Zhang, M. J. Fehr, J. W. Petrich, Y. Wannemuehler and S. Carpenter, Research at the interface between chemistry and virology: Development of a molecular flashlight Chem. Rev. 1996 96 523–535.

    Article  CAS  Google Scholar 

  2. M. J. Fehr, S. L. Carpenter, Y. Wannemuehler and J. W. Petrich, Roles of oxygen and photoinduced acidification in the light-dependent antiviral activity of hypocrellin A Biochemistry 1995 34 15845–15848.

    Article  CAS  Google Scholar 

  3. J. B. Hulson, J. Zhou, J. Chen, L. Harris, L. Yip and G. H. N. Towers, Hypocrellin, from Hypocrella Bambuase, is phototoxic to human immunodeficiency virus Photochem. Photobiol. 1994 60 253–255.

    Article  Google Scholar 

  4. L. Zhang, Y. Gu, F. G. Liu, Y. Y. Liu, X. M. Zhao, J. Zeng, L. N. Han and W. D. Dai, Effect of photodynamic therapy on rat mesenteric microcirculation Chin. J. Laser Med. Surg. 2003 12 69–75.

    Google Scholar 

  5. W. Rettig, Charge separation in excited states of decoupled systems TICT compounds and implications regarding the development of processes and the development of new laser dyes and the primary process of vision and photosynthesis Angew. Chem., Int. Ed. Engl. 1986 25 971–988.

    Article  Google Scholar 

  6. W. Rettig, Solvent polarity dependent formation dynamics of TICT states. I. Differential, solvatokinetics Ber. Bunsen-Ges. Phys. Chem. 1991 95 259–263.

    Article  CAS  Google Scholar 

  7. Z. R. Grabowski, K. Rotkiewicz, A. Siemiarczuk, D. J. Cowley and W. Baumann, Twisted intramolecular charge transfer states (TICT). A new class of excited states with a full charge separation Nouv. J. Chim. 1979 3 443–454.

    CAS  Google Scholar 

  8. S. J. Xu, S. Chen, M. H. Zhang and T. Shen, First synthesis of methylated Hypocrellin and its fluorescent excited state: A cautionary tale J. Org. Chem. 2003 68 2048–2050.

    Article  CAS  Google Scholar 

  9. K. Das, D. S. English and J. W. Petrich, Deuterium isotope effect on the excited-state photophysics of hypocrellin: evidence for proton of hydrogen atom transfer J. Phys. Chem. A 1997 101 3241–3245.

    Article  CAS  Google Scholar 

  10. K. Das, D. S. English, M. J. Fehr, A. V. Smirnov and J. W. Petrich, Excited-state processes in polycyclic quinines: the light-induced antiviral agent, hypocrellin, and a comparison with hypericin J. Phys. Chem. 1996 100 18275–18281.

    Article  CAS  Google Scholar 

  11. K. Das, D. S. English and J. W. Petrich, Solvent dependence on the intramolecular excited-state proton or hydrogen atom transfer in hypocrellin J. Am. Chem. Soc. 1997 119 2763–2764.

    Article  CAS  Google Scholar 

  12. X. Y. Jin, Y. W. Zhao, J. Xie and J. Q. Zhao, Fluorescence response of hypocrellin B to the environmental changes in a mimic biological membrane-liposome Sci. China, Ser. B 2004 47 335–339.

    Article  CAS  Google Scholar 

  13. B. Z. Zhao, J. Xie and J. Q. Zhao, Binding of hypocrellin B to human serum albumin and photo-induced interactions Biochim. Biophys. Acta 2005 1722 124–130.

    Article  CAS  Google Scholar 

  14. L. M. Song, B. Z. Zhao, J. Xie and J. Q. Zhao, Interactions of Hypocrellin B with hyaluronan and photo-induced interactions Biochim. Biophys. Acta 2006 1760 333.

    Article  CAS  Google Scholar 

  15. C. C. Lee, B. W. Pouge, R. R. Strawbridge, K. L. Moodie, L. R. Bartholomew, G. C. Burke and P. J. Hoopes, Comparison of photosensitizer (AIPcS2) quantification techniques: In situ fluorescence microsampling versus tissue chemical extraction Photochem. Photobiol. 2001 74 453–460.

    Article  CAS  Google Scholar 

  16. M. Olivo, W. Lau, V. Manivasager, P. H. Tan, K. C. Soo and C. Cheng, Macro-microscopic fluorescence of human bladder cancer using hypericin fluorescence cystoscopy and laser confocal microscopy Int. J. Oncol. 2003 23 983–990.

    PubMed  Google Scholar 

  17. D. J. Bjorkman, W. S. Samowitz, E. J. Brigham, B. J. Peterson and R. C. Straight, Fluorescence localization of early colonic cancer in the rat by hematoporphyrin derivative Lasers Surg. Med. 1991 11 263–270.

    Article  CAS  Google Scholar 

  18. R. Cheung, M. Solonenko, T. M. Busch, F. D. Piero, M. E. Putt, S. M. Hahn and A. G. Yodh, Correlation of in vivo photosensitizer fluorescence and photodynamic-therapy-induced depth of necrosis in a murine tumor model J. Biomed. Opt. 2003 8 248–252.

    Article  CAS  Google Scholar 

  19. S. Curry, P. Brick and N. P. Franks, Fatty acid binding to human serum albumin: new insights from crystallographic studies Biochim. Biophys. Acta 1999 1441 131–140.

    Article  CAS  Google Scholar 

  20. A. D. Bangham, M. M. Standish and J. C. Watkins, Diffusion of univalent ions across the lamellae of swollen phospholipids J. Mol. Biol. 1965 13 238–252.

    Article  CAS  Google Scholar 

  21. M. K. Cowman and S. Matsuoka, Experimental approaches to hyaluronan structure Carbohydr. Res. 2005 340 791–809.

    Article  CAS  Google Scholar 

  22. C. Chan, L. L. Burrows and C. M. Deber, Helix Induction in Antimicrobial Peptides by Alginate in Biofilms J. Biol. Chem. 2004 279 38749–38754.

    Article  CAS  Google Scholar 

  23. S. Cohen, M. C. Bano, M. Chow and R. Langer, Lipid-alginate interactions render changes in phospholipid bilayer permeability Biochim. Biophys. Acta 1991 1063 95–102.

    Article  CAS  Google Scholar 

  24. Y. Y. He, J. Y. An, W. Zou and L. J. Jiang, Photoreactions of hypocrellin B with thiol compounds J. Photochem. Photobiol., B 1998 44 45–52.

    Article  CAS  Google Scholar 

  25. F. Jr. Szoka and D. Papahadjopoulos, Comparative properties and methods of preparation of lipid vesicles (liposomes) Ann. Rev. Biophys. Bioeng. 1980 9 467–508.

    Article  CAS  Google Scholar 

  26. F. Moreno, J. Gonzalez-Jimenez, Binding of the Promen fluorescent probe to human serum albumin: a fluorescence spectroscopic study Chem. Biol. Interact. 1999 121 237–252.

    Article  CAS  Google Scholar 

  27. C. L. Yu, S. Chen, M. H. Zhang and T. Shen, Spectroscopic studies and photodynamic actions of hypocrellin B in liposomes Photochem. Photobiol. 2001 73 482–488.

    Article  CAS  Google Scholar 

  28. K. Das, A. V. Smirnov, J. Wen, P. Miskovsky and J. W. Petrich, Photophysics of hypericin in complex with subcellular components: Interactions with human serum albumin Photochem. Photobiol. 1999 69 633–645.

    Article  CAS  Google Scholar 

  29. G. P. Van Balen, C. M. Martinet, G. Caron, G. Bouchard, M. Reist, P. A. Carrupt, R. Fruttero, A. Gasco and B. Testa, Liposome/water lipophilicity: methods, information content, and pharmaceutical applications Med. Res. Rev. 2004 24 299–324.

    Article  Google Scholar 

  30. L. Trynda-Lemiesz, Paclitaxel-HSA interaction. Binding sites on HSA molecule Bioorg. Med. Chem. 2004 12 3269–3275.

    Article  CAS  Google Scholar 

  31. A. T. R. Williams, S. A. Winfield and J. N. Miller, Relative fluorescence quantum yields using a computer controlled luminescence spectrometer Analyst 1983 108 1067–1071.

    Article  CAS  Google Scholar 

  32. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum Press, New York, 2nd edn, 1999.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingquan Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, L., Xie, J., Zhang, C. et al. Recognition of various biomolecules by the environment-sensitive spectral responses of hypocrellin B. Photochem Photobiol Sci 6, 683–688 (2007). https://doi.org/10.1039/b618678e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b618678e

Navigation