Skip to main content
Log in

Generation of long-lived radical ions through enhanced photoinduced electron transfer processes between [60]fullerene and phenothiazine derivatives

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photoinduced electron transfer processes between fullerenes (C60) and four phenothiazine derivatives (PTZs) in the absence and presence of hexylviologen dication (HV2+) have been studied by the transient absorption method in the visible and near-IR regions. Electron-transfer takes place from PTZs to the triplet states of fullerenes (3C60*) giving the radical anion of fullerenes (C60·-) and the radical cations of PTZs (PTZ·+). The rate constants and efficiencies of electron transfer are quite high, because of the high electron-donor abilities of PTZs as elucidated by their low oxidation potentials. On addition of HV2+ to the C60 and PTZ systems, the electron-mediating process occurs from C60·- to HV2+, yielding the viologen radical cation (HV·+). In the presence of a sacrificial donor, HV·+ persisted for a long time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. S. Foote, Physics and Chemistry of the Fullerenes, ed. K. Prassides, NATO ASI Series vol. C-443, Kluwer Academic Publishers, Dordrecht, 1994, pp. 79–96.

  2. O. Ito, Res. Chem. Intermed., 1997, 23, 389.

    Article  CAS  Google Scholar 

  3. M. Maggini, and D. M. Guldi, Molecular and Supramolecular Photochemistry, ed. V. Ramamurthy and K. S. Schanze, Marcel Dekker, New York, 2000, vol. 4, pp. 149–196.

  4. D. M. Guldi, and P. V. Kamat, Fullerenes, Chemistry, Physics and Technology, ed. K. M. Kadish and R. S. Ruoff, Wiley-Interscience, New York, 2000, pp. 225–281.

  5. J. W. Arbogast, C. S. Foote, J. Am. Chem. Soc., 1991, 113, 8886.

    Article  CAS  Google Scholar 

  6. R. J. Senior, A. Z. Szarka, G. R. Smith, R. M. Hochstrasser, Chem. Phys. Lett., 1991, 185, 179.

    Article  Google Scholar 

  7. S. Fukuzumi, T. Suenobu, M. Patz, T. Hirasaka, S. Itoh, M. Fujitsuka, O. Ito, J. Am. Chem. Soc., 1998, 120, 8060.

    Article  CAS  Google Scholar 

  8. O. Ito, Y. Sasaki, M. E. El-Khouly, Y. Araki, M. Fujitsuka, A. Hirao, H. Nishizawa, Bull. Chem. Soc. Jpn., 2002, 75, 1247.

    Article  CAS  Google Scholar 

  9. H. Onodera, Y. Araki, M. Fujitsuka, S. Onodera, O. Ito, F. Bai, M. Zheng, J.-L. Yang, J. Phys. Chem. A, 2001, 105, 7341.

    Article  CAS  Google Scholar 

  10. A. S. D. Sandanayaka, Y. Araki, C. Luo, M Fujitsulka, O. Ito, Bull. Chem. Soc. Jpn., 2004, 77, 1313.

    Article  CAS  Google Scholar 

  11. S. A. Jenekhe, L. Lu, M. M. Alam, Macromolecules, 2001, 34, 7315.

    Article  CAS  Google Scholar 

  12. R. Y. Lai, E. F. Fabrizio, L. Lu, S. A. Jenekhe, A. J. Bard, J. Am. Chem. Soc., 2001, 123, 9112.

    Article  CAS  Google Scholar 

  13. F. Fungo, S. A. Jenekhe, A. J. Bard, Chem. Mater., 2003, 15, 1264.

    Article  CAS  Google Scholar 

  14. D.-H. Hwang, S.-K. Kim, M.-J. Park, J.-H. Lee, B.-W. Koo, I.-N. Kang, S.-H. Kim, T. Zyung, Chem. Mater., 2004, 16, 1298.

    Article  CAS  Google Scholar 

  15. X. Sun, Y. Liu, X. Xu, C. Yang, G. Yu, S. Chen, Z. Zhao, W. Qiu, Y. Li, D. Zhu, J. Phys. Chem. B, 2005, 109, 10786.

    Article  CAS  Google Scholar 

  16. M. M. Alam, S. A. Jenekhe, Chem. Mater., 2002, 14, 4775.

    Article  CAS  Google Scholar 

  17. M. M. Alam, C. J. Tonzola, S. A. Jenekhe, Macromolecules, 2003, 36, 6577.

    Article  CAS  Google Scholar 

  18. M. M. Alam, S. A. Jenekhe, Chem. Mater., 2004, 16, 4647.

    Article  CAS  Google Scholar 

  19. K. Arshak, D. Morris, A. Arshak, O. Korostynska, E. Jafer, D. Waldron, J. Harris, Biomol. Eng., 2006, 23, 253.

    Article  CAS  Google Scholar 

  20. B. Corne, A. Dodabalapur, A. Gelperin, L. Torsi, H. E. Katz, A. J. Lovinger, Z. Bao, Appl. Phys. Lett., 2001, 78, 2229.

    Article  Google Scholar 

  21. R. Wisnieff, Nature, 1998, 394, 225.

    Article  CAS  Google Scholar 

  22. H. D. Ghosh, D. K. Palit, A. V. Sapre, J. P. Mittal, Chem. Phys. Lett., 1997, 265, 365.

    Article  CAS  Google Scholar 

  23. Y. Yahata, Y. Sasaki, M. Fujitsuka, O. Ito, J. Photosci, 2000, 6, 117.

    Google Scholar 

  24. H. Yonemura, N. Kuroda, S. Moribe, S. Yamada, C. R. Chim., 2006, 9, 254.

    Article  CAS  Google Scholar 

  25. K. G. Thomas, V. Biju, P. V. Kamat, M. V. George, D. M. Guldi, ChemPhysChem, 2003, 4, 1299.

    Article  CAS  Google Scholar 

  26. A. Z. Weller, Phys. Chem. Neue Folge, 1982, 133, 93.

    Article  CAS  Google Scholar 

  27. H. N. Ghosh, H. Pal, A. V. Sapre, J. P. Mittal, J. Am. Chem. Soc., 1993, 115, 11722.

    Article  CAS  Google Scholar 

  28. S. I. Murov, I. Carmichael, and G. L. Hug, Handbook of Photochemistry, Marcel-Dekker, New York, 1993.

    Google Scholar 

  29. M. M. Alam, A. Watanabe, O. Ito, Bull. Chem. Soc. Jpn., 1997, 70, 1833.

    Article  CAS  Google Scholar 

  30. M. M. Alam, A. Watanabe, O. Ito, J. Photochem. Photobiol., A, 1997, 104, 59.

    Article  CAS  Google Scholar 

  31. C. A. Steren, H. von Willigen, L. Biczok, N. Gupta, H. Linschitz, J. Phys. Chem., 1996, 100, 8920.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Ito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, Y., Araki, Y., Ito, O. et al. Generation of long-lived radical ions through enhanced photoinduced electron transfer processes between [60]fullerene and phenothiazine derivatives. Photochem Photobiol Sci 6, 560–565 (2007). https://doi.org/10.1039/b617229f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b617229f

Navigation