Skip to main content
Log in

The photochemistry and photophysics of all-trans-1,4-diindanylidenyl-2-butene, a rigid analogue of all-trans-1,6-diphenyl-1,3,5-hexatriene

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

all-trans-1,4-Diindanylidenyl-2-butene (ttt-stiff-5-DPH), a torsionally constrained analogue of all-trans-1,6-diphenyl-1,3,5-hexatriene (ttt-DPH), was synthesized and studied in order to evaluate the role of phenyl–vinyl torsional motions in the photophysical and photochemical responses of the DPH chromophore. Spectroscopic and photoisomerization measurements reveal that the behavior of the rigid DPH analogue is very similar to that of the parent DPH. This similarity is obtained despite the fact that the alkyl substitution from the five-membered rings selectively lowers the energy of the 1 1Bu* state, leading to inversion of the order of the 1 1Bu* and 2 1Ag* energy levels in hydrocarbon solvents. In stiff-5-DPH, as in DPH, an increase in solvent polarity enhances terminal over central bond photoisomerization. Analyses of fluorescence and photoisomerization quantum yields show that, as in DPH, the torsional relaxation channel on the singlet excited state manifold is inefficient, falling far short of accounting for all radiationless decay. Significant (∼50 and 80% of all singlet decay in Bz and AN, respectively), photochemically unproductive, radiationless decay channels exist in both molecules. Competing one bond photoisomerizations give the two major photoproducts: tct-stiff-5-DPH and ctt-stiff-5-DPH. They were isolated in pure form and were spectroscopically characterized. Biacetyl-sensitization was used to study the behavior of the stiff-5-DPH triplet state. As in the parent DPH, stiff-5-DPH triplets undergo relatively efficient concentration dependent geometric photoisomerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For a review, see J. Saltiel and Y.-P. Sun, Cis-trans isomerization of C,C double bonds, in Photochromism, Molecules and Systems, ed. H. Dürr and H. Bouas-Laurent, Elsevier, Amsterdam, 1990, pp. 64–164.

  2. B. S. Hudson, B. E. Kohler, Linear polyene electronic structure and spectroscopy, Annu. Rev. Phys. Chem., 1974, 25, 437–460.

    Article  CAS  Google Scholar 

  3. B. S. Hudson, B. E. Kohler and K. Schulten, Linear polyene electronic structure and potential surfaces, in Excited States, ed. E. C. Lim, Academic Press, New York, 1982, vol. 6, pp. 1–95.

  4. E. F. Hilinski, W. M. McGowan, D. F. Sears, Jr., J. Saltiel, Evolutions of singlet excited state absorption and fluorescence of all-trans-1,6-diphenyl-1,3,5-hexatriene in the picosecond time domain, J. Phys. Chem., 1996, 100, 3308–3311.

    Article  CAS  Google Scholar 

  5. W. A. Yee, R. H. O’Neil, J. W. Lewis, J. Z. Zhang, D. S. Kliger, Femtosecond transient absorption studies of diphenylpolyenes. Direct detection of S2 → S1 radiationless conversion in diphenylhexatriene and diphenyloctatetraene, Chem. Phys. Lett., 1997, 276, 430–434.

    Article  CAS  Google Scholar 

  6. S. Hogiu, W. Werneke, M. Pfeiffer, A. Lau, T. Steinke, Picosecond time-resolved CARS spectroscopy of a mixed excited singlet state of diphenylhexatriene, Chem. Phys. Lett., 1998, 287, 8–16.

    Article  CAS  Google Scholar 

  7. J. R. Andrews, B. S. Hudson, Environmental effects on radiative rate constants with applications to linear polyenes, J. Chem. Phys., 1978, 68, 4587–4594.

    Article  CAS  Google Scholar 

  8. J. B. Birks, G. N. R. Tripathi, M. D. Lumb, The fluorescence of all-trans-diphenylpolyenes, Chem. Phys., 1978, 33, 185–194.

    Article  CAS  Google Scholar 

  9. M. Pfeiffer, W. Werncke, S. Hogiu, A. Kummrow, A. Lau, Strong vibronic coupling in the first excited singlet state of diphenylhexatriene by an asymmetric low-frequency mode, Chem. Phys. Lett., 1998, 295, 56–62

    Article  CAS  Google Scholar 

  10. S. Hogiu, W. Werncke, M. Pfeiffer, A. Lau, Evidence of strong vibronic coupling in the first excited singlet state of diphenylhexatriene by picosecond CARS spectroscopy, Chem. Phys. Lett., 1999, 303, 218–222

    Article  CAS  Google Scholar 

  11. W. Werncke, S. Hogiu, M. Pfeiffer, Strong S1–S2 vibronic coupling and enhanced third order hyperpolarizability in the first excited singlet state of diphenylhexatriene studied by time-resolved CARS, A. Lau, and A. Kummrow, J. Phys. Chem. A, 2000, 104, 4211–4217.

    Article  CAS  Google Scholar 

  12. P. C. Alford, T. F. Palmer, Fluorescence of DPH derivatives—evidence for emission from S2 and S1 excited-states, Chem. Phys. Lett., 1982, 86, 248–253.

    Article  CAS  Google Scholar 

  13. P. C. Alford, T. F. Palmer, Photophysics of derivatives of all-trans-1,6-diphenyl-1,3,5-hexatriene (DPH). 1. Model involving fluorescence from S2 and S1 excited-states, J. Chem. Soc., Faraday Trans. 2, 1983, 79, 433–447.

    Article  CAS  Google Scholar 

  14. T. Itoh, B. E. Kohler, Dual fluorescence of diphenylpolyenes, J. Phys. Chem., 1987, 91, 1760–1764.

    Article  CAS  Google Scholar 

  15. J. Saltiel, D. F. Sears, Jr., Y.-P. Sun, J.-O. Choi, Evidence for ground state s-cis-conformers in the fluorescence spectra of all-trans-1,6-diphenyl-1,3,5-hexatriene, J. Am. Chem. Soc., 1992, 114, 3607–3612.

    Article  CAS  Google Scholar 

  16. A. M. Turek, G. Krishnamoorthy, D. F. Sears, Jr., I. Garcia, O. Dmitrenko, J. Saltiel, Resolution of three fluorescence components in the spectra of all-trans-1,6-diphenyl-1,3,5-hexatriene under isopolarizability conditions, J. Phys. Chem. A, 2005, 109, 293–303.

    Article  CAS  PubMed  Google Scholar 

  17. J. Saltiel, S. Wang, D.-H. Ko, D. A. Gormin, Cistrans photoisomerization of the 1,6-diphenyl-1,3,5-hexatrienes in the triplet state. The quantum chain mechanism and the structure of the triplet state, J. Phys. Chem. A, 1998, 102, 5383–5392

    Article  CAS  Google Scholar 

  18. J. Saltiel, J. M. Crowder, S. Wang, Mapping the potential energy surfaces of the 1,6-diphenyl-1,3,5-hexatriene ground and triplet states, J. Am. Chem. Soc., 1999, 121, 895–902, 5352.

    Article  CAS  Google Scholar 

  19. J. Saltiel, D.-H. Ko, S. A. Fleming, Differential medium effects on the trans to cis photoisomerization of all-trans-1,6-diphenyl-1,3,5-hexatriene. Competing diradicaloid vs zwitterionic pathways, J. Am. Chem. Soc., 1994, 116, 4099–4100

    Article  CAS  Google Scholar 

  20. J. Saltiel, S. Wang, L. P. Watkins, D.-H. Ko, Direct photoisomerization of the 1,6-diphenyl-1,3,5-hexatrienes. Medium effect on triplet and singlet contributions, J. Phys. Chem. A, 2000, 104, 11443–11450.

    Article  CAS  Google Scholar 

  21. J. Saltiel, G. Krishnamoorthy, Z. Huang, D.-H. Ko, S. Wang, The photoisomerization of all-trans-1,6-diphenyl-1,3,5-hexatriene. Temperature and deuterium isotope effects, J. Phys. Chem. A, 2003, 107, 3178–3186.

    Article  CAS  Google Scholar 

  22. J. Saltiel, G. Krishnamoorthy, Z. Huang, D.-H. Ko, S. Wang, Stereoselective O2-induced photoisomerization of all-trans-1,6-diphenyl-1,3,5-hexatriene, Can. J. Chem., 2003, 81, 673–679.

    Article  CAS  Google Scholar 

  23. J. B. Birks, D. J. S. Birch, The fluorescence of diphenyl- and retinol-polyenes, Chem. Phys. Lett., 1975, 31, 608–610

    Article  CAS  Google Scholar 

  24. J. B. Birks, Horizontal radiationless transitions, Chem. Phys. Lett., 1978, 54, 430–434.

    Article  CAS  Google Scholar 

  25. G. Orlandi, W. Siebrand, Model for the direct photoisomerization of stilbene, Chem. Phys. Lett., 1975, 30, 352–354.

    Article  CAS  Google Scholar 

  26. J. Saltiel, Perdeuteriostilbene. The role of phantom states in the cis-trans photoisomerization of stilbenes, J. Am. Chem. Soc., 1967, 89, 1036–1037

    Article  CAS  Google Scholar 

  27. J. Saltiel, Perdeuteriostilbene. The triplet and singlet paths for stilbene photoisomerization, J. Am. Chem. Soc., 1968, 90, 6394–6400.

    Article  CAS  Google Scholar 

  28. C. Rullière, A. Declémy, Picosecond photophysics of diphenylpolyenes: evidence for the influence of excited-state conformational changes on the energy gap δE(Bu*-Ag*), Chem. Phys. Lett., 1987, 135, 213–218.

    Article  Google Scholar 

  29. J. Saltiel, S. Wang, Absorption and fluorescence spectra of a rigid analogue of all-trans-1,6-diphenyl-1,3,5-hexatriene. Solvent controlled order inversion of 2 1Ag and 1 1Bu energy levels, J. Am. Chem. Soc., 1995, 117, 10761–10762.

    Article  CAS  Google Scholar 

  30. G. Wittig, A. Hesse, Directed aldol condensation: β-phenylcinnamaldehyde, Org. Synth., 1970, 50, 66–72.

    Article  CAS  Google Scholar 

  31. J. E. McMurry, M. P. Fleming, New method for the reductive coupling of carbonyls to olefins. Synthesis of.beta.-carotene, J. Am. Chem. Soc., 1974, 96, 4708–4709

    Article  CAS  Google Scholar 

  32. J. E. McMurry, Organic chemistry of low-valent titanium, Acc. Chem. Res., 1974, 7, 281.

    Article  CAS  Google Scholar 

  33. J. Saltiel, D. F. Sears, Jr., D. -H Ko and K.-M. Park, Cis-trans isomerization of alkenes, in Handbook of Organic Photochemistry and Photobiology, ed. W. M. Horspool and P.-O. Song, CRC Press, London, 1995, Section 1, pp. 3–15.

  34. F. G. Moses, R. S. H. Liu, B. M. Monroe, The ‘merry-go-round’ quantum yield apparatus, Mol. Photochem., 1969, 1, 245–249.

    CAS  Google Scholar 

  35. H. A. Hammond, D. E. DeMeyer, J. L. R. Williams, Quantum yields for the sensitized photoisomerization of cis- and trans-stilbene, J. Am. Chem. Soc., 1969, 91, 5180–5181

    Article  CAS  Google Scholar 

  36. D. Valentine, Jr., G. S. Hammond, Energy wastage in photosensitized isomerizations of the stilbenes, J. Am. Chem. Soc., 1972, 94, 3449–3454.

    Article  CAS  Google Scholar 

  37. A. A. Lamola, G. S. Hammond, Intersystem crossing efficiencies, J. Chem. Phys., 1965, 43, 2129–2135

    Article  CAS  Google Scholar 

  38. J. Saltiel, A. Marinari, D. W.-L. Chang, J. C. Mitchener, E. D. Megarity, Trans-cis photoisomerization of the stilbenes and a reexamination of the positional dependence of the heavy-atom effect, J. Am. Chem. Soc., 1979, 101, 2982–2996.

    Article  CAS  Google Scholar 

  39. J. Saltiel, D. F. Sears, Jr., J.-O. Choi, Y.-P. Sun, D. W. Eaker, The fluorescence, fluorescence-excitation and UV absorption spectra of trans-1-(2-naphthyl)-2-phenylethene conformers, J. Phys. Chem., 1994, 98, 35–46.

    Article  CAS  Google Scholar 

  40. A. Marinari, J. Saltiel, A fluorescence technique for the separation of radiative from non-radiative energy transfer. Its application in the trans-stilbene/azulene system, Mol. Photochem., 1976, 7, 225–249.

    CAS  Google Scholar 

  41. For figures of the 1H NMR spectra see S. Wang, The photoisomerization of 1,6-diphenylhexatrienes Ph. D. Dissertation, 1998, Florida State University, Tallahassee, FL.

    Google Scholar 

  42. K. Lunde, L. Zechmeister, Cistrans isomeric 1,6-diphenylhexatrienes, J. Am. Chem. Soc., 1954, 76, 2308–2313.

    Article  CAS  Google Scholar 

  43. IUPAC Analytical Chemistry Division, Commission on Solubility Data, Oxygen and ozone, in Solubility Data Series, ed. R. Battino, Pergamon, Oxford, vol. 7, 1981.

    Google Scholar 

  44. W. D. K. Clark, C. Steele, Photochemistry of 2,3-diazabicyclo[2.2.2]oct-2-ene, J. Am. Chem. Soc., 1971, 93, 6347–6355.

    Article  CAS  Google Scholar 

  45. J. Saltiel, J. T. D’Agostino, Separation of viscosity and temperature effects on the singlet pathway to stilbene photoisomerization, J. Am. Chem. Soc., 1972, 94, 6445–6457.

    Article  CAS  Google Scholar 

  46. M. Lee, J. N. Haseltine, A. B. Smith, R. M. Hochstrasser, Isomerization processes of electronically excited stilbene and diphenylbutadiene in liquids. Are they one-dimensional?, J. Am. Chem. Soc., 1989, 111, 5044–5051.

    Article  CAS  Google Scholar 

  47. S. E. Wallace-Williams, B. J. Schwartz, S. Møller, R. A. Goldbeck, W. A. Yee, M. A. El-Bayoumi, D. S. Kliger, Excited state spectra and dynamics of phenyl-substituted butadienes, J. Phys. Chem., 1994, 98, 60–67.

    Article  CAS  Google Scholar 

  48. B. Jousselme, P. Blanchard, P. Frère, J. Roncali, Enhancement of the π-electron delocalization and fluorescence efficiency of 1,6-diphenyl-1,3,5-hexatriene by covalent rigidification, Tetrahedron Lett., 2000, 41, 5057–5061.

    Article  CAS  Google Scholar 

  49. H. L. J. Bäckstrom, K. Sandros, Transfer of triplet state energy in fluid solutions. 1. Sensitized phosphorescence and its application to the determination of triplet state lifetimes, Acta Chem. Scand., 1960, 14, 48–62.

    Article  Google Scholar 

  50. Parallel irradiations of degassed solutions of biacetyl and trans-stilbene (0.201 and 5.00 × 10−3 M, respectively) and benzophenone and trans-stilbene (0.0204 and 0.0101 M, respectively) in a merry-go-round at 366 and 370 nm gave ftranscis = 0.502 for biacetyl-sensitization of stilbene isomerization, indicating fis = 0.91, a somewhat lower value than that given in ref. 35.

  51. E. D. Cehelnik, R. B. Cundall, J. R. Lockwood, T. J. Palmer, Solvent and temperature effects on the fluorescence of all-trans-1,6-diphenyl-1,3,5-hexatriene, J. Phys. Chem., 1975, 79, 1369–1380.

    Article  CAS  Google Scholar 

  52. D. H. Ko, Photochemistry of all-trans 1,6-diphenyl-1,3,5-hexatriene Ph.D. Thesis, 1997, Florida State University, Tallahassee, FL, 32306-4390.

    Google Scholar 

  53. J. B. Birks, D. J. Dyson, Relations between fluorescence and absorption properties of organic molecules, Proc. R. Soc. London, Ser. A, 1963, 275, 135–148.

    Article  CAS  Google Scholar 

  54. S. J. Strickler, R. A. Berg, Relationship between absorption intensity and fluorescence lifetime of molecules, J. Chem. Phys., 1962, 37, 814–822.

    Article  CAS  Google Scholar 

  55. B. S. Hudson, B. E. Kohler, Polyene spectroscopy: the lowest energy excited singlet state of diphenyloctatetraene and other linear polyenes, J. Chem. Phys., 1973, 59, 4984–5002.

    Article  CAS  Google Scholar 

  56. We thank L. P. Watkins for this calculation.

  57. J. Saltiel, A. S. Waller, D. F. Sears, Jr., C. Z. Garrett, Fluorescence quantum yields of trans-stilbene-d0 and -d2 in n-hexane and n-tetradecane. Medium and deuterium isotope effects on decay processes, J. Phys. Chem., 1993, 97, 2516–2522.

    Article  CAS  Google Scholar 

  58. L. A. Sklar, B. S. Hudson, M. Petersen, J. Diamond, Conjugated polyene fatty acids on fluorescent probes: spectroscopic characterization, Biochemistry, 1977, 16, 813–818.

    Article  CAS  PubMed  Google Scholar 

  59. J. Timmermans, Physico-Chemical Constants of Pure Organic Compounds, Elsevier, New York, 1950, vol. 1 and vol. 2.

    Google Scholar 

  60. M. T. Allen, L. Miola, D. G. Whitten, Temperature effects on fluorescence in diphenylpolyene derivatives: structure- and substituent-dependent changes in mechanisms and rates for nonradiative decay, J. Phys. Chem., 1987, 91, 6099–6102.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Saltiel.

Additional information

This paper was published as part of the special issue in honour of the late Professor George S. Hammond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saltiel, J., Wang, S. The photochemistry and photophysics of all-trans-1,4-diindanylidenyl-2-butene, a rigid analogue of all-trans-1,6-diphenyl-1,3,5-hexatriene. Photochem Photobiol Sci 5, 883–895 (2006). https://doi.org/10.1039/b608065k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b608065k

Navigation