Skip to main content
Log in

Interactions between different solar UVB/UVA filters contained in commercial suncreams and consequent loss of UV protection

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A systematic investigation of two well-known and popular commercial suncreams reveals significant degradation when exposed to simulated UV sunlight at an irradiance corresponding to natural sunlight. We have examined the photochemistry of two widely used sunscreen active agents in pure solvents separately and together (in solution), and in neat form, as well as their photochemistry when present in the actual suncream emulsion (as thin films on a glass substrate) since their combination typically produces suncreams with high sun protection factors (SPF): (1a) octyl methoxycinnamate (OMC; octinoxate) and (2a) 4-tert-butyl-4′-methoxydibenzoylmethane (also known as avobenzone and Parsol 1789), present in the two suncream formulations in combination with others (one also contained TiO2). Intermediates and/or photoproducts were identified by UV/visible spectroscopy, HPLC and liquid chromatographic/mass spectral methods, and by both 1H and 13C-NMR techniques. Structural assignments of the substrates produced were aided by examining model systems {viz. ethyl cinnamate (1b) and dibenzoylmethane (2b)} of the two sunscreen active agents. Irradiation of the cinnamates and the diketones together led to a [2 + 2] photocycloaddition process yielding cinnamate dimers and cyclobutylketone photoadducts that subsequently fragmented into substituted oxopentanoates and oxobutanoates. Similar findings were observed when the two active agents were simultaneously present in the same suncream emulsion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Cridland, and R. D. Saunders, Cellular and Molecular Effects of UVA and UVB, HMSO Publication Centre, London, 1994.

    Google Scholar 

  2. World Health Organization, Sunscreens, IARC Handbooks of Cancer Prevention, Oxford University Press, Oxford, UK, 2001,, vol. 5. Address: International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon, France.

    Google Scholar 

  3. F. P. Gasparro, Sunscreen Photobiology - Molecular, cellular and physiological aspects, Springer-Verlag, New York, 1997.

    Book  Google Scholar 

  4. N. Serpone, A. V. Emeline, Modeling heterogeneous photo-catalysis by metal-oxide nanostructured semiconductor and insulator materials: Factors that affect the activity and selectivity of photocatalysts, Res. Chem. Intermed., 2005, 31, 391–432.

    Article  CAS  Google Scholar 

  5. H. Maier, G. Schauberger, K. Brunnhofer, H. Hönigsmann, Change of ultraviolet absorbance of sunscreens by exposure to solar-simulated radiation, J. Invest. Dermatol., 2001, 117, 256–262.

    Article  CAS  PubMed  Google Scholar 

  6. N. Tarras-Wahlberg, G. Stenhangen, O. Larkö, A. Rosén, A. M. Wennberg, O. Wennerström, Changes in ultraviolet absorption of sunscreens after ultraviolet irradiation, J. Invest. Dermatol., 1999, 113, 547–553.

    Article  CAS  PubMed  Google Scholar 

  7. W. Schwack, T. Rudolph, Photostability and photoreactivity of UVA-filters in cosmetics, GIT Lab. J., 1996, 4, 373–377.

    Google Scholar 

  8. W. Schwack, T. Rudolph, Photoreactions of chemicals UVA filters in cosmetics, GIT Lab. J., 1997, 1, 17–20.

    Google Scholar 

  9. C. A. Bonda, The photostability of organic sunscreen actives: A review, Cosmet. Sci. Technol. Ser., 2005, 28, 321–349.

    CAS  Google Scholar 

  10. S. T. Butt, T. Christensen, Toxicity and phototoxicity of chemical sun filters, Radiat. Prot. Dosim., 2000, 91, 283–286.

    Article  CAS  Google Scholar 

  11. F. Journe, M. C. Marguery, J. Rakotondrazafy, F. El. Sayed, J. Bazex, Sunscreen sensitization: a 5 year study, Acta Derm. Venereol., 1999, 79, 211–213.

    Article  CAS  PubMed  Google Scholar 

  12. N. Cook, S. Freeman, Report of 19 cases of photoallergic contact dermatitis to sunscreens seen at the Skin and Cancer Foundation, Aust. J. Dermatol., 2001, 42, 257–259.

    Article  CAS  Google Scholar 

  13. A. Darway, I. R. White, R. J. Rycroft, A. B. Jones, J. L. Hawk, J. P. McFadden, Photoallergic contact dermatitis is uncommon, Br. J. Dermatol., 2001, 145, 597–601.

    Article  Google Scholar 

  14. F. Afaq, V. M. Adhami, H. Mukhtar, Photochemoprevention of ultra-violet B signalling and photocarcinogenesis, Mutat. Res., 2005, 571, 153–173.

    Article  CAS  PubMed  Google Scholar 

  15. R. Dunford, A. Salinaro, L. Cai, N. Serpone, S. Horikoshi, H. Hidaka, J. Knowland, Chemical oxidation and DNA damage catalyzed by inorganic sunscreen ingredients, FEBS Lett., 1997, 418, 87–90.

    Article  CAS  PubMed  Google Scholar 

  16. N. Serpone, A. Salinaro, A. V. Emeline, S. Horikoshi, H. Hidaka, An in vitro systematic spectroscopic examination of the photostabilities of a random set of commercial sunscreen lotions and their chemical UVB/UVA active agents, Photochem. Photobiol. Sci., 2002, 1, 970–981.

    Article  CAS  PubMed  Google Scholar 

  17. M. Dubois, P. Gilard, P. Tiercet, A. Deflandre, M. A. Lefebvre, Photoisomerisation of the sunscreen filter Parsol 1789, J. Chim. Phys. Phys.-Chim. Biol., 1996, 95, 388–394.

    Article  Google Scholar 

  18. W. Schwack, T. Rudolph, Photochemistry of dibenzoylmethane UVA filters. Part 1, J. Photochem. Photobiol., B, 1995, 28, 229–234.

    Article  CAS  Google Scholar 

  19. A. Cantrell, D. J. McGarvey, Photochemical studies of 4-tert-butyl-4’-methoxydibenzoylmethane (BM-DBM), J. Photochem. Photobiol., B, 2001, 64, 117–122.

    Article  CAS  Google Scholar 

  20. I. Andrae, A. Bringhen, F. Böhm, H. Gonzenbach, T. Hill, L. Mulroy, T. G. Truscott, A UVA filter (4-tert-butyl-4’-methoxydibenzoylmethane): photoprotection reflects photo-physical properties, J. Photochem. Photobiol., B, 1997, 37, 147–150.

    Article  CAS  Google Scholar 

  21. S. Tobita, J. Ohba, K. Nakagawa, H. Shizuka, Recovery mechanism of the reaction intermediate produced by photoinduced cleavage of the intramolecular hydrogen bond of dibenzoylmethane, J. Photochem. Photobiol., A, 1995, 92, 61–67.

    Article  CAS  Google Scholar 

  22. P. Morlière, O. Avice, T. Sa, e Melo, L. Dubercret, M. Giraud, R. Santus, A study of the photochemical properties of some cinnamate sunscreens by steady state and laser flash photolysis, Photochem. Photobiol., 1982, 36, 395–399.

    Article  PubMed  Google Scholar 

  23. H. U. Gonzenbach, P. Schudel, Spectral stability - a meaningful term?, Int. J. Cosmet. Sci., 1988, 9, 287–292.

    Article  Google Scholar 

  24. A. Ricci, M. N. Chretien, L. Maretti, J. C. Scaiano, TiO2-promoted mineralization of organic sunscreens in water suspension and sodium dodecyl sulfate micelles, Photochem. Photobiol. Sci., 2003, 2, 487–492.

    Article  CAS  PubMed  Google Scholar 

  25. R. M. Sayre, J. C. Dowdy, A. Ricci, M. N. Chrétien, J. C. Scaiano, Mineralization of organic sunscreens: interesting, but relevant? Comment and response, Photochem. Photobiol. Sci., 2002, 2, 1050–1051.

    Article  Google Scholar 

  26. J. Christoffers, Novel chemoselective and diastereoselective iron-(III)-catalysed Michael reactions of 1,3-dicarbonyl compounds and enones, J. Chem. Soc., Perkin Trans. 1, 1997, 3141–3150.

    Google Scholar 

  27. B. Catlow, Formulating of sunscreen with ultrafine titanium dioxide, Seifen, Oele, Fette, Wachse, 1993, 119, 497–500.

    CAS  Google Scholar 

  28. Formulators fine-tune TiO2-based screens, Manuf. Chem., 1993, 64, pp. 2633–2635.

    Google Scholar 

  29. Sunscreen Drug Products for Over-the-Counter Human Use, Final Monograph, Federal Register 64 27666, U.S. Food, and Drug Administration, Rockville, MD, 2000, http://www.cfsan.fda.gov/%E2%88%BClrd/fr990521.html

  30. W. Johncock, Formulations of sunscreens: favorable and unfavorable interactions, Cosmet. Toiletries, 1999, 114, 75–80.

    Google Scholar 

  31. A. Deflandre, G. Lang, Photoisomerization of benzylidine camphor and derivatives, Cosmet. Toiletries, 1988, 103, 69–75.

    CAS  Google Scholar 

  32. A. Deflandre, G. Lang, Photostability assessment of sun-screens. Benzylidine camphor and dibenzoylmethane derivatives, Int. J. Cosmet. Sci., 1988, 10, 53–62.

    Article  CAS  PubMed  Google Scholar 

  33. I. Beck, A. Deflandre, G. Lang, R. Arnaud, J. Lemaire, Study of the photochemical behavior of sunscreens - benzylidine camphor and derivatives, Int. J. Cosmet. Sci., 1981, 3, 139–152.

    Article  CAS  PubMed  Google Scholar 

  34. I. Beck, A. Deflandre, G. Lang, R. Arnaud, J. Lemaire, Study of the photochemical behavior of sunscreens - benzylidine camphor and derivatives. II. Photosensitized, isomerization by aromatic ketones and deactivation of the 8-methoxypsoralen triplet state, J. Photochem., 1985, 30, 215–227.

    Article  CAS  Google Scholar 

  35. B. Epe, Genotoxicity of singlet oxygen, Chem.-Biol. Interact., 1991, 80, 239–260.

    Article  CAS  PubMed  Google Scholar 

  36. J. M. Allen, C. J. Gossett, S. K. Allen, Photochemical formation of singlet molecular oxygen in illuminated aqueous solutions of several commercially available sunscreen active agents, Chem. Res. Toxicol., 1996, 9, 605–609.

    Article  CAS  PubMed  Google Scholar 

  37. J. M. Allen, C. J. Gossett, S. K. Allen, Photochemical formation of singlet molecular oxygen (1O2) in illuminated aqueous solutions of p-aminobenzoic acid (PABA), J. Photochem. Photobiol., B, 1996, 32, 33–37.

    Article  CAS  Google Scholar 

  38. A. A. Shaw, L. A. Wainschel, M. D. Shetlar, The photochemistry of p-aminobenzoic acid, Photochem. Photobiol., 1992, 55, 647–656.

    Article  CAS  PubMed  Google Scholar 

  39. A. A. Shaw, L. A. Wainschel, M. D. Shetlar, Photoaddition of p-aminobenzoic acid to thymine and thymidine, Photochem. Photobiol., 1992, 55, 657–663.

    Article  CAS  PubMed  Google Scholar 

  40. B. S. Martincigh, J. M. Allen, and S. K. Allen, Sunscreens: The molecules and their photochemistry, in Sunscreen Photobiology, ed. F. P. Gasparro, Springer-Verlag: New York, 1997, pp. 11–45.

    Google Scholar 

  41. S. Y. Wang, Ed., Photochemistry and Photobiology of Nucleic Acids, Academic Press, New York, 1976, vol. I

  42. J. M. Allen, S. K. Allen, B. Lingg, Chemical compounds used as active ingredients in sunscreens, Spec. Publ.–R. Soc. Chem., 1998, 225, 171–181.

    CAS  Google Scholar 

  43. H. Hidaka, H. Kubota, M. Graetzel, E. Pelizzetti, N. Serpone, Photodegradation of surfactants II. Degradation, of sodium dodecylbenzenesulfonate catalyzed by titanium dioxide particles, J. Photochem., 1986, 35, 219–230.

    Article  CAS  Google Scholar 

  44. P. Yankov, S. Saltiel, I. Petkov, Photoketonization and excited state relaxation of dibenzoylmethane in non-polar solvents, J. Photochem. Photobiol., A, 1988, 41, 205–214.

    Article  CAS  Google Scholar 

  45. M. Moriyasu, A. Kato, Y. Hashimoto, Kinetic studies of fast equilibrium by means of high-performance liquid chromatography. Part II. Keto-enol, tautomerism of some ß-dicarbonyl compounds, J. Chem. Soc., Perkin Trans. 2, 1986, 515–520.

    Google Scholar 

  46. A. J. Villa, C. M. Lagier, A. C. Olivieri, Proton transfer in solid 1-phenylbutane-1,3-dione and related 1,3-diones as studied by carbon-13 CPMAS NMR spectroscopy and AM1 calculations, J. Phys. Chem., 1991, 95, 5069–5073.

    Article  Google Scholar 

  47. M. D’Auria, Regio- and stereochemical control in the photo-dimerization of methyl 3-(2-furyl)acrylate, Heterocycles, 1996, 43, 959–968.

    Article  Google Scholar 

  48. F. D. Lewis, S. L. Quillen, P. D. Hale, J. D. Oxman, Lewis acid catalysis of photochemical reactions. 7. Photodimerization and cross-cycloaddition of cinnamic esters, J. Am. Chem. Soc., 1988, 110, 1261–1267.

    Article  CAS  Google Scholar 

  49. S. S. Kim, J. S. Lim, J. M. Lee, S. C. Shim, Photo-chemical formation of 1,5-diketones from dibenzoylmethane and some quinones, Bull. Korean Chem. Soc., 1999, 20, 531–534.

    CAS  Google Scholar 

  50. G. Kornis, P. de Mayo, Photochemical synthesis. IX. The, conversion of dibenzoylmethane to tribenzoylethane, Can. J. Chem., 1964, 42, 2822–2827.

    Article  CAS  Google Scholar 

  51. At near completion of our work, we learned that formation of adducts from substrates 1a and 2a were also reported by M. Köhhnlein, in “Untersuchungen zum photochemischen Verhalten des UV-B Filters Octylmethoxycinnamat in Modellsystemen, Sonnenschutzmitteln sowie auf der Haut”, Ph.D. Thesis, Universitat Hohenheim, Germany, 2000, and in a short communication; see for example M. Köhnlein, W. Schwack, Photo-reaktionen von UV-Filtern in Modellsystemen, in Sonnen-schutzmitteln sowie auf der Haut, Lebensmittelchemie, 2000, 54, 33.

    Google Scholar 

  52. G. Nikolov, P. Markov, Photochemical hydrogen abstraction as a radiationless transition in the photoketonization of b-dicarbonyls, J. Photochem., 1981, 16, 93–104.

    Article  CAS  Google Scholar 

  53. The increased photoreaction of 1a in the presence of 2a was observed previously and was attributed to energy transfer from the latter component. See for example R. M. Sayre, J. C. Dowdy, A. J. Gerwig, W. J. Sheieds, R. V. Lloyd, Unexpected photolysis of the sunscreen octinoxate in the presence of the sunscreen avobenzone, Photochem. Photobiol., 2005, 81, 452–456.

    Article  CAS  PubMed  Google Scholar 

  54. L. R. Robinson (Procter & Gamble Co), US Patent 99–264139 199990305. See, for example, Chem. Abst., 1999, 131, 314104

  55. F. Pflücker, H. Hohenberg, E. Hölzle, T. Will, S. Pfeiffer, R. Wepf, W. Diembeck, H. Wenck, H. Gers-Barlag, “The outer-most stratum corneum layer is an effective barrier against dermal uptake of topically applied micronized titanium dioxide”, Int. J. Cosmet. Sci., 1999, 21, 399–405.

    PubMed  Google Scholar 

  56. F. Menzel, T. Reinert, J. Vogt, T. Butz, Investigations of percutaneous uptake of ultrafine TiO2 particles at the high energy ion nanoprobe LIPSION, Nucl. Instrum. Methods Phys. Res., Sect. B, 2004, 219–220, 82–86.

    Article  CAS  Google Scholar 

  57. Bennat Müller-Goymann, Skin penetration and stabilization of formulations containing microfine titanium dioxide as physical UV filter, Int. J. Cosmet. Sci., 2000, 22, 271–283.

    Article  PubMed  Google Scholar 

  58. J. Lademann, H.-J. Weigmann, C. Rickmeyer, H. Barthelmes, H. Schaefer, G. Mueller, W. Sterry, Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice, Skin Pharmacol. Appl. Skin Physiol., 1999, 12, 247–256.

    Article  CAS  PubMed  Google Scholar 

  59. R. M. Brand, J. Pike, R. M. Wilson, A. R. Charron, Sunscreen containing physical UV blockers can increase trans-dermal absorption of pesticides, Toxicol. Ind. Health, 2003, 19, 9–16.

    Article  CAS  PubMed  Google Scholar 

  60. R. Jiang, M. S. Roberts, D. M. Collins, M. S. Benson, Absorption of sunscreens across human skin: an evaluation of commercial products for children and adults, Brit. J. Clin. Pharmac., 1999, 48, 635–637.

    Article  CAS  Google Scholar 

  61. V. K. Gupta, J. L. Zatz, M. Rerek, Percutaneous absorption of sunscreens through micro-Yucatan pig skin in vitro, Pharmacol. Res., 1999, 16, 1602–1608.

    Article  CAS  Google Scholar 

  62. V. Sarveiya, S. Risk, H. A. E. Benson, Liquid chromatographic assay for common sunscreen agents: application to in vivo assessment of skin penetration and systemic absorption in human volunteers, J. Chromatogr., B, 2004, 803, 225–231.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angelo Albini or Nick Serpone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dondi, D., Albini, A. & Serpone, N. Interactions between different solar UVB/UVA filters contained in commercial suncreams and consequent loss of UV protection. Photochem Photobiol Sci 5, 835–843 (2006). https://doi.org/10.1039/b606768a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b606768a

Navigation