Skip to main content
Log in

Photolysis of formylmethylflavin in aqueous and organic solvents

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photolysis of formylmethylflavin (FMF), a major intermediate in the photodegradation sequence of riboflavin, has been carried out in water (pH 7.0) and in several organic solvents. FMF produces lumichrome (LC) in organic solvents and LC and lumiflavin (LF) in aqueous solution. FMF and its photoproducts have been analysed using a specific multicomponent spectrophotometric method. FMF undergoes a bimolecular redox reaction on photolysis. The second-order rate constants for the reaction range from 0.66 (chloroform) to 2.44 M−1 s−1 (water) and are a linear function of the solvent dielectric constant. A plot of ln k against 1/e is linear for the reactions in 1-butanol, 1-propanol, ethanol, methanol, acetonitrile and water (e ~ 17–79) and non-linear in chloroform and dichloroethane (e ~ 5–10) suggesting a change in reaction mechanism in the two regions. This may be explained on the basis of the existence of a dipolar intermediate along the reaction pathway. The rate of photolysis is governed by the solvation of the intermediate and is thus influenced by the dielectric constant of the medium. The solvent effect on the rate of photolysis of FMF has been expressed in terms of the solvent acceptor number. A linear relationship has been found between ln k and the solvent acceptor number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. C. Smith, and D. E. Metzler, The photochemical degradation of riboflavin, J. Am. Chem. Soc., 1963, 85, 3285–3288.

    Article  CAS  Google Scholar 

  2. W. M. Moore, J. T. Spence, F. A. Raymond, and S. D. Colson, Photochemistry of riboflavin. 1. The hydrogen transfer process in the anaerobic photobleaching of flavins, J. Am. Chem. Soc., 1963, 85, 3367–3372.

    Article  CAS  Google Scholar 

  3. W. L. Cairns, and D. E. Metzler, Photochemical degradation of flavins. VI. A new photoproduct and its use in studying the photolytic mechanism, J. Am. Chem. Soc., 1971, 93, 2772–2777.

    Article  CAS  PubMed  Google Scholar 

  4. P. F. Heelis, The photophysical and photochemical properties of flavins (isoalloxazines), Chem. Soc. Rev., 1982, 11, 15–39.

    Article  CAS  Google Scholar 

  5. I. Ahmad, Q. Fasihullah, A. Noor, I. A. Ansari, Q. N. M. Ali, Photolysis of riboflavin in aqueous solution: a kinetic study, Int. J. Pharm., 2004, 280, 199–208.

    Article  CAS  PubMed  Google Scholar 

  6. I. Ahmad, Q. Fasihullah, F. H. M. Vaid, A study of simultaneous photolysis and photoaddition reactions of riboflavin in aqueous solution, J. Photochem. Photobiol., B, 2004, 75, 13–20.

    Article  CAS  Google Scholar 

  7. I. Ahmad, Q. Fasihullah, F. H. M. Vaid, Effect of phosphate buffer on photodegradation reactions of riboflavin in aqueous solution, J. Photochem. Photobiol., B, 2005, 78, 229–234.

    Article  CAS  Google Scholar 

  8. P. S. Song, and D. E. Metzler, Photochemical degradation of flavins. IV. Studies, on the anaerobic photolysis of riboflavin, Photochem. Photobiol., 1967, 6, 691–709.

    Article  CAS  PubMed  Google Scholar 

  9. G. E. Treadwell, W. L. Cairns, and D. E. Metzler, Photochemical degradation of flavins. V. Chromatographic studies of the products of photolysis of riboflavin, J. Chromatogr., 1968, 35, 376–388.

    Article  CAS  PubMed  Google Scholar 

  10. I. Ahmad, H. D. C. Rapson, Multicomponent spectrophotometric assay of riboflavin and photoproducts, J. Pharm. Biomed. Anal., 1990, 8, 217–223.

    Article  CAS  PubMed  Google Scholar 

  11. W. M. Moore, and R. C. Ireton, The photochemistry of riboflavin - V. The, photodegradation of isoalloxazines in alcoholic solvents, Photochem. Photobiol., 1977, 25, 347–356.

    Article  CAS  PubMed  Google Scholar 

  12. I. Ahmad, H. D. C. Rapson, P. F. Heelis, and G. O. Phillips, Alkaline hydrolysis of 7,8-dimethyl-10-(formylmethyl) isoalloxazine. A kinetic study, J. Org. Chem., 1980, 45, 731–733.

    Article  CAS  Google Scholar 

  13. P. F. Heelis, G. O. Phillips, I. Ahmad, H. D. C. Rapson, The photodegradation of formylmethylflavin - a steady state and laser flash photolysis study, Photobiochem. Photobiophys., 1980, 1, 125–130.

    CAS  Google Scholar 

  14. H. Heitele, Dynamic solvent effects on electron transfer reactions, Angew. Chem., Int. Ed., 2003, 32, 359–377.

    Article  Google Scholar 

  15. A. J. Parker, Rates of reaction in protic and dipolar aprotic solvents, Chem. Rev., 1969, 69, 1–32.

    Article  CAS  Google Scholar 

  16. E. Buncel, R. A. Stairs and and H. Wilson, The Role of the Solvent in Chemical Reactions, Oxford University Press, New York, 2003.

    Google Scholar 

  17. A. Pross, Theoretical and Physical Principles of Organic Reactivity, Wiley, New York, 1995, pp. 196–218.

    Google Scholar 

  18. C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, VCH Publishers, New York, 2nd edn, 1988.

    Google Scholar 

  19. K. J. Laidler, Chemical Kinetics, Harper & Row, New York, 3rd edn, 1987, pp. 183–195.

    Google Scholar 

  20. R. Schmidt and V. N. Sapunov, Non-Formal Kinetics, Verlag Chemie, Weinheim, 1982, pp. 123–154.

    Google Scholar 

  21. E. S. Amis and J. F. Hinton, Solvent Effects on Chemical Phenomena, Academic Press, New York, 1973.

    Google Scholar 

  22. E. M. Kosower, An Introduction to Physical Organic Chemistry, Wiley, New York, 1968, pp. 259–386.

    Google Scholar 

  23. F. Wilkinson, Chemical Kinetics and Reaction Mechanisms, Van Nostrand Reinhold, London, 1980, pp. 142–143.

    Google Scholar 

  24. M. M. Amiji and B. J. Sandmann, Applied Physical Pharmacy, McGraw-Hill, New York, 2003, pp. 262–264.

    Google Scholar 

  25. Martin’s Physical Pharmacy and Pharmaceutical Sciences, ed. P. J. Sinko, Lippincott Williams & Wilkins, Baltimore, 2006, 4th edn, pp. 415–416.

    Google Scholar 

  26. J. T. Carstensen, Drug Stability Principles and Practices, Marcel Dekker, 1990, pp. 79–80.

    Google Scholar 

  27. K. A. Connors, G. L. Amidon and V. J. Stella, Chemical Stability of Pharmaceuticals, Wiley, New York, 2nd edn, 1986, pp. 38–41.

    Google Scholar 

  28. I. Racz, Drug Formulation, Wiley, New York, 1989, pp. 134–142.

    Google Scholar 

  29. P. S. Song, in Flavins and Flavoproteins, ed. H. Kamin, University Park Press, Baltimore, 1971, pp. 37–61.

  30. M. Green, and G. Tollin, Flash photolysis of flavins.1. Photoreduction in non-aqueous solvents, Photochem. Photobiol., 1968, 7, 129–143.

    Article  CAS  PubMed  Google Scholar 

  31. W. E. Kurtin, M. A. Latino, and P. S. Song, A study of photochemistry of flavins in pyridine and with a donor, Photochem. Photobiol., 1967, 6, 247–259.

    Article  CAS  PubMed  Google Scholar 

  32. V. Szczesna and J. Koziol, in Flavins and Flavoproteins-Physicochemical Properties and Function, ed. W. Ostrowski, Polish Scientific Publishers, Warsaw, 1977, pp. 117–126.

  33. I. Ahmad, and G. Tollin, Solvent effects on flavin electron reactions, Biochemistry, 1982, 20, 5925–5928.

    Article  Google Scholar 

  34. H. H. Fall, and H. G. Petering, Metabolic inhibitors. 1. 6,7-Dimethyl-9-formylmethylisoalloxazine, 6,7-dimethyl-9-(2-hydroxyethyl)-isoalloxazine and derivatives, J. Am. Chem. Soc., 1956, 78, 377–381.

    Article  CAS  Google Scholar 

  35. C. Fukumachi, and Y. Sakurai, Vitamin B2 photolysis. V. The, photolytic formation of 6,7-dimethylflavin-9-acetic acid ester from riboflavin, Vitamins (Kyoto), 1954, 7, 939–943.

    CAS  Google Scholar 

  36. I. Ahmad, Q. Fasihullah, F. H. M. Vaid, Effect of light intensity and wavelengths on photodegradation reactions of riboflavin in aqueous solution, J. Photochem. Photobiol., B, 2006, 82, 21–27.

    Article  CAS  Google Scholar 

  37. C. G. Hatchard, and C. A. Parker, A new sensitive chemical actinimeter. II. Potassium, ferrioxalate as a standard chemical actinometer, Proc. R. Soc. London, Ser. A, 1956, A 235, 518–536.

    Google Scholar 

  38. E. Sikorska, D. R. Worrall, J. I. Bourdelande, and M. Sikorski, Photophysics of lumichrome and its analogs, Pol. J. Chem., 2003, 77, 65–73.

    Google Scholar 

  39. Pharmaceutics The Science of Dosage Form Design, ed. M. E. Aulton, Churchill Livigstone, London, 2nd edn, 2002, pp. 104–105.

    Google Scholar 

  40. V. Guttman, The Donor–Acceptor Approach to Molecular Interactions, Plenum Press, New York, 1978.

    Book  Google Scholar 

  41. M. M. McBride, and D. E. Metzler, Photochemical degradation of flavins. III. Hydroxyethyl, and formylmethyl analogs of riboflavin, Photochem. Photobiol., 1967, 6, 113–123.

    Article  CAS  PubMed  Google Scholar 

  42. M. M. McBride, and W. M. Moore, The photochemistry of riboflavin. II. Polarographic, studies on the hydroxyethyl and formylmethyl analogs of riboflavin, Photochem. Photobiol., 1967, 6, 103–113.

    Article  CAS  PubMed  Google Scholar 

  43. W. M. Moore, C. Baylor, Jr., Photochemistry of riboflavin. IV. Photobleaching of some nitrogen-9-substituted isoalloxazines and flavines, J. Am. Chem. Soc., 1969, 91, 7170–7179.

    Article  CAS  Google Scholar 

  44. B. G. Barman, and G. Tollin, Kinetics and equilibriums in partially reduced flavin solutions, Biochemistry, 1972, 11, 4760–4765.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iqbal Ahmad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, I., Fasihullah, Q. & Vaid, F.H.M. Photolysis of formylmethylflavin in aqueous and organic solvents. Photochem Photobiol Sci 5, 680–685 (2006). https://doi.org/10.1039/b602917e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b602917e

Navigation