Skip to main content
Log in

Modeling pigment contributions to spectral reflection of apple fruit

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A simple approach for spectral reconstruction of spectral reflection by whole apple fruit is described. It is shown that an approximation to the reflection spectrum can be obtained by making a simple assumption on the shape of the featureless scattering and using known spectral properties of the following pigment pools: (i) thylakoid-bound chlorophylls and carotenoids, (ii) cuticular/vacuolar phenolics, (iii) extrathylakoid chloroplasts/chromoplasts carotenoids, and (iv) vacuolar anthocyanins. The in vivo spectra of individual pigment pools estimated in bleaching experiments or as a difference between fruit with high and low pigment content are presented. In most cases simulations based on a linear combination of spectra proved to be effective, but fruit with high chlorophyll content necessitated the use of a non-linear model. The models succeeded in simulating reflection spectra of fruit widely differing in pigment content and composition with relative error lower than ±4% over the visible range. The estimated relative contributions by the pigment pools into total reflection were found to be sensitive indicators of apple fruit ripening and could be useful in evaluating the light screening efficacy by flavonoids and carotenoids under stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Jacquemoud and S. L. Ustin, Leaf optical properties: a state of the art, Proceedings of the 8th International Symposium on Physical Measurements & Signatures in Remote Sensing, Aussois, France, 8–12 January 2001, CNES, pp. 223–232.

    Google Scholar 

  2. A. A. Gitelson, Y. Zur, O. B. Chivkunova and M. N. Merzlyak, Assessing carotenoid content in plant leaves with reflectance spectroscopy, Photochem. Photobiol., 2002, 75, 272–281.

    Article  CAS  Google Scholar 

  3. M. N. Merzlyak, O. B. Chivkunova, T. B. Melø and K. R. Naqvi, Does a leaf absorb radiation in the Near Infra Red (780–900 nm)? A new approach to quantifying optical reflection, absorption and transmission of leaves, Photosynth. Res., 2002, 72, 263–270.

    Article  CAS  Google Scholar 

  4. A. A. Gitelson, U. Gritz and M. N. Merzlyak, Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves, J. Plant Physiol., 2003, 160, 271–282.

    Article  CAS  Google Scholar 

  5. K. R. Naqvi, T. Hj. Hassan and Y. A. Naqvi, Expeditious implementation of two new methods for analysing the pigment composition of photosynthetic specimens, Spectrochim. Acta, Part A, 2004, 60, 2783–2791.

    Article  Google Scholar 

  6. M. N. Merzlyak, A. A. Gitelson, O. B. Chivkunova and V. Yu. Rakitin, Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening, Physiol. Plant., 1999, 106, 135–141.

    Article  CAS  Google Scholar 

  7. A. A. Gitelson, M. N. Merzlyak and O. B. Chivkunova, Optical properties and non-destructive estimation of anthocyanin content in plant leaves, Photochem. Photobiol., 2001, 74, 38–45.

    Article  CAS  Google Scholar 

  8. Z. G. Cerovic, A. Ounis, A. Cartelat, G. Latouche, Y. Goulas, S. Meyer and I. Moya, The use of chlorophyll fluorescence excitation spectra for the non-destructive in situ assessment of UV-absorbing compounds in leaves, Plant, Cell Environ., 2000, 25, 1663–1676.

    Article  Google Scholar 

  9. W. Bilger, T. Johnsen and U. Schreiber, UV-excited chlorophyll fluorescence as a tool for assessment of UV-protection by the epidermis of plants, J. Exp. Bot., 2001, 52, 2007–2014.

    Article  CAS  Google Scholar 

  10. M. Merzlyak, A. Solovchenko and S. Pogosyan, Optical properties of rhodoxanthin accumulated in Aloe arborescens Mill. leaves under high-light stress with special reference to its photoprotective function, Photochem. Photobiol. Sci., 2005, 4, 333–400.

    Article  CAS  Google Scholar 

  11. M. Knee, Anthocyanin, carotenoid, and chlorophyll changes in peel of Cox’s Orange Pippin apples during ripening on and off the tree, J. Exp. Bot., 1972, 23, 184–196.

    Article  CAS  Google Scholar 

  12. J. Gross, Pigments of fruits, in Food Science and Technology, Academic Press, Oxford, 1987, pp. 167–191.

    Google Scholar 

  13. M. M. Blanke and F. Lenz, Fruit photosynthesis, Plant, Cell Environ., 1989, 12, 31–46.

    Article  CAS  Google Scholar 

  14. M. C. Saure, External control of anthocyanin formation in apple, Sci. Hortic., 1990, 42, 181–218.

    Article  CAS  Google Scholar 

  15. J. E. Lancaster, J. E. Grant, C. E. Lister and M. C. Taylor, Skin color in apples-influence of copigmentation and plastid pigments on shade and darkness of red color in five genotypes, J. Am. Soc. Hortic. Sci, 1994, 119, 63–69.

    Article  CAS  Google Scholar 

  16. M. N. Merzlyak, A. E. Solovchenko and A. A. Gitelson, Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit, Postharvest Biol. Technol., 2003, 27, 88–103.

    Article  Google Scholar 

  17. A. Solovchenko and M. Merzlyak, Optical properties and contribution of cuticle to UV protection in plants: experiments with apple fruit, Photochem. Photobiol. Sci., 2003, 2, 861–866.

    Article  CAS  Google Scholar 

  18. M. N. Merzlyak, A. E. Solovchenko, A. I. Smagin and A. A. Gitelson, Apple flavonols during fruit adaptation to solar radiation: spectral features and technique for non-destructive assessment, J. Plant Physiol., 2005, 162, 151–160.

    Article  CAS  Google Scholar 

  19. M. Zude-Sasse, I. Truppel and B. Herold, An approach to non-destructive apple fruit chlorophyll determination, Postharvest Biol. Technol., 2002, 25, 123–133.

    Article  CAS  Google Scholar 

  20. A. E. Solovchenko, O. B. Chivkunova, M. N. Merzlyak and V. A. Gudkovsky, Relationships between chlorophyll and carotenoid pigments during on- and off-tree ripening of apple fruit as revealed non-destructively with reflectance spectroscopy, Postharvest Biol. Technol., 2005, 38, 9–17.

    Article  CAS  Google Scholar 

  21. M. N. Merzlyak and O. B. Chivkunova, Light stress induced pigment changes and evidence for anthocyanin photoprotection in apple fruit, J. Photochem. Photobiol., B, 2000, 55, 154–162.

    Article  Google Scholar 

  22. M. N. Merzlyak, A. E. Solovchenko and O. B. Chivkunova, Patterns of pigment changes in apple fruits during adaptation to high sunlight and sunscald development, Plant Biochem. Physiol., 2002, 40, 679–684.

    Article  CAS  Google Scholar 

  23. F. Ma and L. Cheng, Exposure of the shaded side of apple fruit to full sun leads to up-regulation of both the xanthophyll cycle and the ascorbate-glutathione cycle, Plant Sci., 2004, 166, 1479–1486.

    Article  CAS  Google Scholar 

  24. M. N. Merzlyak, A. A. Gitelson, S. I. Pogosyan, L. Lekhimena and O. B. Chivkunova, Light-induced pigment degradation in leaves and ripening fruits studied in situ with reflectance spectroscopy, Physiol. Plant., 1998, 104, 661–667.

    Article  CAS  Google Scholar 

  25. M. N. Merzlyak and A. E. Solovchenko, Photostability of pigments in ripening apple fruit: a possible photoprotective role of carotenoids during plant senescence, Plant Sci., 2002, 163, 881–888.

    Article  CAS  Google Scholar 

  26. O. B. Chivkunova, A. E. Solovchenko, S. G. Sokolova, M. N. Merzlyak, I. V. Reshetnikova and A. A. Gitelson, Reflectance spectral features and detection of superficial scald-induced browning in storing apple fruit, Russ. J. Phytopathol., 2001, 2, 73–77.

    Google Scholar 

  27. P. Taroni, A. Pieri, A. Torricelli, D. Comelli and R. Cubeddu, In vivo absorption and scattering spectroscopy of biological tissues, Photochem. Photobiol. Sci., 2003, 2, 124–129.

    Article  CAS  Google Scholar 

  28. R. Cubeddu, C. D’Andrea, C. Pifferi, P. Taroni, A. Torricelli, G. Valentini, M. Ruiz-Altisent, C. Valero, C. Ortiz, C. Dover and D. Johnson, Time-resolved reflectance spectroscopy applied to the non-destructive monitoring of the internal optical properties in apples, Appl. Spectrosc., 2001, 55, 1368–1374.

    Article  CAS  Google Scholar 

  29. K. R. Naqvi, M. N. Merzlyak and T. B. Melø, Absorption and scattering of light by suspensions of cells and subcellular particles: an analysis in terms of Kramers–Kronig relations, Photochem. Photobiol. Sci., 2004, 3, 132–137.

    Article  CAS  Google Scholar 

  30. L. N. M. Duysens, The flattering of the absorption spectrum of suspensions, as compared to that of solutions, Biochim. Biophys. Acta, 1956, 19, 1–12.

    Article  CAS  Google Scholar 

  31. M. Knee, Carotenol esters in developing apple fruits, Phytochemistry, 1988, 27, 1005–1009.

    Article  CAS  Google Scholar 

  32. S. Lurie, E. Pesis and R. Ben-Arie, Darkening of sunscald on apples in storage is a non-enzymatic and non-oxidative process, Postharvest Biol. Technol., 1991, 1, 119–125.

    Article  CAS  Google Scholar 

  33. A. E. Solovchenko and M. Schmitz-Eiberger, Significance of skin flavonoids for UV-B protection in apple fruits, J. Exp. Bot., 2003, 54, 1977–1984.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark N. Merzlyak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merzlyak, M.N. Modeling pigment contributions to spectral reflection of apple fruit. Photochem Photobiol Sci 5, 748–754 (2006). https://doi.org/10.1039/b602160c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b602160c

Navigation