Skip to main content
Log in

Proton translocation by the cytochrome bc1 complexes of phototrophic bacteria: introducing the activated Q-cycle

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The cytochrome bc1 complexes are proton-translocating, dimeric membrane ubiquinol:cytochrome c oxidoreductases that serve as “hubs” in the vast majority of electron transfer chains. After each ubiquinol molecule is oxidized in the catalytic center P at the positively charged membrane side, the two liberated electrons head out, according to the Mitchell’s Q-cycle mechanism, to different acceptors. One is taken by the [2Fe-2S] iron—sulfur Rieske protein to be passed further to cytochrome c1. The other electron goes across the membrane, via the low- and high-potential hemes of cytochrome b, to another ubiquinone-binding site N at the opposite membrane side. It has been assumed that two ubiquinol molecules have to be oxidized by center P to yield first a semiquinone in center N and then to reduce this semiquinone to ubiquinol. This review is focused on the operation of cytochrome bc1 complexes in phototrophic purple bacteria. Their membranes provide a unique system where the generation of membrane voltage by light-driven, energy-converting enzymes can be traced via spectral shifts of native carotenoids and correlated with the electron and proton transfer reactions. An “activated Q-cycle” is proposed as a novel mechanism that is consistent with the available experimental data on the electron/proton coupling. Under physiological conditions, the dimeric cytochrome bc1 complex is suggested to be continually primed by prompt oxidation of membrane ubiquinol via center N yielding a bound semiquinone in this center and a reduced, high-potential heme b in the other monomer of the enzyme. Then the oxidation of each ubiquinol molecule in center P is followed by ubiquinol formation in center N, proton translocation and generation of membrane voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. B. Knaff, The cytochrome bc1 complexes of photosynthetic purple bacteria, Photosynth. Res., 1993, 35, 117–33.

    Article  CAS  PubMed  Google Scholar 

  2. B. L. Trumpower, R. B. Gennis, Energy transduction by cytochrome complexes in mitochondrial and bacterial respiration: the enzymology of coupling electron transfer reactions to transmembrane proton translocation, Annu. Rev. Biochem., 1994, 63, 675–16.

    Article  CAS  PubMed  Google Scholar 

  3. R. E. Sharp, C. C. Moser, B. R. Gibney, P. L. Dutton, Primary steps in the energy conversion reaction of the cytochrome bc1 complex QO site, J. Bioenerg. Biomembr., 1999, 31, 225–233.

    Article  CAS  PubMed  Google Scholar 

  4. A. R. Crofts, The Q-cycle—a personal perspective, Photosynth. Res., 2004, 80, 223–43.

    Article  CAS  PubMed  Google Scholar 

  5. E. A. Berry, M. Guergova-Kuras, L. S. Huang, A. R. Crofts, Structure and function of cytochrome bc complexes, Annu. Rev. Biochem., 2000, 69, 1005–75.

    Article  CAS  PubMed  Google Scholar 

  6. J. L. Smith, H. Zhang, J. Yan, G. Kurisu, W. A. Cramer, Cytochrome bc complexes: a common core of structure and function surrounded by diversity in the outlying provinces, Curr. Opin. Struct. Biol., 2004, 14, 432–39.

    Article  CAS  PubMed  Google Scholar 

  7. E. A. Berry, L. S. Huang, L. K. Saechao, N. G. Pon, M. Valkova-Valchanova, F. Daldal, X-Ray structure of Rhodobacter capsulatus cytochrome bc1: comparison with its mitochondrial and chloroplast counterparts, Photosynt. Res., 2004, 81, 251–75.

    Article  CAS  Google Scholar 

  8. W. A. Cramer and D. B. Knaff, Energy transduction in biological membranes: a textbook of bioenergetics, Springer-Verlag, New York, 1990.

    Book  Google Scholar 

  9. S. Hekimi, S. L. Guarente, Genetics and the specificity of the aging process, Science, 2003, 299, 1351–54.

    Article  CAS  PubMed  Google Scholar 

  10. D. Xia, C. A. Yu, H. Kim, J. Z. Xia, A. M. Kachurin, L. Zhang, L. Yu, J. Deisenhofer, Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria, Science, 1997, 277, 60–66.

    Article  CAS  PubMed  Google Scholar 

  11. Z. Zhang, L. Huang, V. M. Shulmeister, Y. I. Chi, K. K. Kim, L. W. Hung, A. R. Crofts, E. A. Berry, S. H. Kim, Electron transfer by domain movement in cytochrome bc1, Nature, 1998, 392, 677–84.

    Article  CAS  PubMed  Google Scholar 

  12. S. Iwata, J. W. Lee, K. Okada, J. K. Lee, M. Iwata, B. Rasmussen, T. A. Link, S. Ramaswamy, B. K. Jap, Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex, Science, 1998, 281, 64–71.

    Article  CAS  PubMed  Google Scholar 

  13. H. Kim, D. Xia, C. A. Yu, J. Z. Xia, A. M. Kachurin, L. Zhang, L. Yu, J. Deisenhofer, Inhibitor binding changes domain mobility in the iron–sulfur protein of the mitochondrial bc1 complex from bovine heart, Proc. Natl. Acad. Sci. U. S. A., 1998, 95, 8026–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. C. Hunte, J. Koepke, C. Lange, T. Rossmanith, H. Michel, Structure at 2.3 Å resolution of the cytochrome bc1 complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment, Struct. Fold. Des., 2000, 8, 669–84.

    Article  CAS  Google Scholar 

  15. C. Lange, C. Hunte, Crystal structure of the yeast cytochrome bc1 complex with its bound substrate cytochrome c, Proc. Acad. Sci. U. S. A., 2002, 99, 2800–05.

    Article  CAS  Google Scholar 

  16. K. H. Xiao, A. Chandrasekaran, L. Yu, C. A. Yu, Evidence for the intertwined dimer of the cytochrome bc1 complex in solution, J. Biol. Chem., 2001, 276, 46125–31.

    Article  CAS  PubMed  Google Scholar 

  17. K. H. Leung, P. C. Hinkle, Reconstitution of ion transport and respiratory control in vesicles formed from reduced coenzyme Q-cytochrome c reductase and phospholipids, J. Biol. Chem., 1975, 250, 8467–71.

    Article  CAS  PubMed  Google Scholar 

  18. E. C. Hurt, N. Gabellini, Y. Shahak, W. Lockau, G. Hauska, Extra proton translocation and membrane potential generation-universal properties of cytochrome bc1/b6f complexes reconstituted into liposomes, Arch. Biochem. Biophys., 1983, 225, 879–85.

    Article  CAS  PubMed  Google Scholar 

  19. P. Mitchell, Proton motive redox mechanism of the cytochrome bc1 complex in the respiratory chain: Proton motive ubiquinone cycle, FEBS Lett., 1975, 56, 1–6.

    Article  CAS  PubMed  Google Scholar 

  20. P. Mitchell, Possible molecular mechanisms of the protonmotive function of cytochrome systems, J. Theor. Biol., 1976, 62, 327–67.

    Article  CAS  PubMed  Google Scholar 

  21. M. K. Wikstrom, J. A. Berden, Oxidoreduction of cytochrome b in the presence of antimycin, Biochim. Biophys. Acta, 1972, 283, 403–20.

    Article  CAS  PubMed  Google Scholar 

  22. O. A. Gopta, B. A. Feniouk, W. Junge, A. Y. Mulkidjanian, The cytochrome bc1 complex of Rhodobacter capsulatus: ubiquinol oxidation in a dimeric Q-cycle?, FEBS Lett., 1998, 431, 291–96.

    Article  CAS  PubMed  Google Scholar 

  23. C. Hunte, H. Palsdottir, B. L. Trumpower, Protonmotive pathways and mechanisms in the cytochrome bc1 complex, FEBS Lett., 2003, 545, 39–46.

    Article  CAS  PubMed  Google Scholar 

  24. A. Osyczka, C. C. Moser, F. Daldal, P. L. Dutton, Reversible redox energy coupling in electron transfer chains, Nature, 2004, 427, 607–12.

    Article  CAS  PubMed  Google Scholar 

  25. P. R. Rich, The quinone chemistry of bc complexes, Biochim. Biophys. Acta, 2004, 1658, 165–171.

    Article  CAS  PubMed  Google Scholar 

  26. A. Y. Mulkidjanian, Ubiquinol oxidation in the cytochrome bc complex: Reaction mechanism and prevention of short-circuiting, Biochim. Biophys. Acta, 2005, 1709, 5–34.

    Article  CAS  PubMed  Google Scholar 

  27. H. Myllykallio, F. Drepper, P. Mathis, F. Daldal, Electron-transfer supercomplexes in photosynthesis and respiration, Trends Microbiol., 2000, 8, 493–94.

    Article  CAS  PubMed  Google Scholar 

  28. X. Gao, X. Wen, L. Esser, B. Quinn, L. Yu, C. A. Yu, D. Xia, Structural basis for the quinone reduction in the bc1 complex: a comparative analysis of crystal structures of mitochondrial cytochrome bc1 with bound substrate and inhibitors at the Qi site, Biochemistry, 2003, 42, 9067–80.

    Article  CAS  PubMed  Google Scholar 

  29. H. Palsdottir, C. G. Lojero, B. L. Trumpower, C. Hunte, Structure of the yeast cytochrome bc1 complex with a hydroxyquinone anion Qo site inhibitor bound, J. Biol. Chem., 2003, 278, 31303–11.

    Article  CAS  PubMed  Google Scholar 

  30. L. Esser, B. Quinn, Y. F. Li, M. Zhang, M. Elberry, L. Yu, C. A. Yu, D. Xia, Crystallographic studies of quinol oxidation site inhibitors: a modified classification of inhibitors for the cytochrome bc1 complex, J. Mol. Biol., 2004, 341, 281–302.

    Article  CAS  PubMed  Google Scholar 

  31. A. R. Crofts, The cytochrome bc1 complex: function in the context of structure, Annu. Rev. Physiol., 2004, 66, 689–733.

    Article  CAS  PubMed  Google Scholar 

  32. M. K. Wikstrom, The different cytochrome b components in the respiratory chain of animal mitochondria and their role in electron transport and energy conservation, Biochim. Biophys. Acta, 1973, 301, 155–93.

    Article  CAS  PubMed  Google Scholar 

  33. W. H. van den Berg, R. C. Prince, C. L. Bashford, K. I. Takamiya, W. D. Bonner, Jr., P. L. Dutton, Electron and proton transport in the ubiquinone cytochrome bc2 oxidoreductase of Rhodopseudomonas sphaeroides. Patterns of binding and inhibition by antimycin, J. Biol. Chem., 1979, 254, 8594–604.

    Article  PubMed  Google Scholar 

  34. L. S. Huang, D. Cobessi, E. Y. Tung, E. A. Berry, Binding of the respiratory chain inhibitor antimycin to the mitochondrial bc1 complex: a new crystal structure reveals an altered intramolecular hydrogen-bonding pattern, J. Mol. Biol., 2005, 351, 573–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. S. W. Meinhardt, A. R. Crofts, The site and mechanism of action of myxothiazol as an inhibitor of electron transfer in Rhodopseudomonas sphaeroides, FEBS Lett., 1982, 149, 217–22.

    Article  CAS  Google Scholar 

  36. U. Brandt, U. Haase, H. Schagger, G. von Jagow, Significance of the “Rieske” iron–sulfur protein for formation and function of the ubiquinol-oxidation pocket of mitochondrial cytochrome c reductase (bc1 complex), J. Biol. Chem., 1991, 266, 19958–64.

    Article  CAS  PubMed  Google Scholar 

  37. A. R. Crofts, B. Barquera, R. B. Gennis, R. Kuras, M. Guergova-Kuras, E. A. Berry, Mechanism of ubiquinol oxidation by the bc1 complex: Different domains of the quinol binding pocket and their role in the mechanism and binding of inhibitors, Biochemistry, 1999, 38, 15807–26.

    Article  CAS  PubMed  Google Scholar 

  38. L. Zhang, Z. Li, B. Quinn, L. Yu, C. A. Yu, Nonoxidizable ubiquinol derivatives that are suitable for the study of the ubiquinol oxidation site in the cytochrome bc1 complex, Biochim. Biophys. Acta, 2002, 1556, 226–32.

    Article  CAS  PubMed  Google Scholar 

  39. L. Esser, X. Gong, S. Yang, L. Yu, C. A. Yu, D. Xia, Surface-modulated motion switch: capture and release of iron–sulfur protein in the cytochrome bc1 complex, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 13045–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. C. R. D. Lancaster, H. Michel, The coupling of light-induced electron transfer and proton uptake as derived from crystal structures of reaction centres from Rhodopseudomonas viridis modified at the binding site of the secondary quinone, QB, Structure, 1997, 5, 1339–59.

    Article  CAS  PubMed  Google Scholar 

  41. A. R. Crofts, S. Hong, N. Ugulava, B. Barquera, R. Gennis, M. Guergova-Kuras, E. A. Berry, Pathways for proton release during ubihydroquinone oxidation by the bc1 complex, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 10021–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. B. L. Trumpower, A concerted, alternating sites mechanism of ubiquinol oxidation by the dimeric cytochrome bc1 complex, Biochim. Biophys. Acta, 2002, 1555, 166–73.

    Article  CAS  PubMed  Google Scholar 

  43. J. L. Cape, M. K. Bowman, D. M. Kramer, Reaction intermediates of quinol oxidation in a photoactivatable system that mimics electron transfer in the cytochrome bc1 complex, J. Am. Chem. Soc., 2005, 127, 4208–15.

    Article  CAS  PubMed  Google Scholar 

  44. E. B. Gutierrez-Cirlos, B. L. Trumpower, Inhibitory analogs of ubiquinol act anti-cooperatively on the yeast cytochrome bc1 complex. Evidence for an alternating, half-of-the-sites mechanism of ubiquinol oxidation, J. Biol. Chem., 2002, 277, 1195–202.

    Article  CAS  PubMed  Google Scholar 

  45. R. Covian, B. L. Trumpower, Regulatory interactions between ubiquinol oxidation and ubiquinone reduction sites in the dimeric cytochrome bc1 complex, J. Biol. Chem., 2006, 281, 30925–32.

    Article  CAS  PubMed  Google Scholar 

  46. S. de Vries, S. P. Albracht, J. A. Berden, E. C. Slater, The pathway of electrons through QH2:cytochrome c oxidoreductase studied by pre-steady-state kinetics, Biochim. Biophys. Acta, 1982, 681, 41–53.

    Article  PubMed  Google Scholar 

  47. S. de Vries, S. P. Albracht, J. A. Berden, C. A. Marres, E. C. Slater, The effect of pH, ubiquinone depletion and myxothiazol on the reduction kinetics of the prosthetic groups of ubiquinol:cytochrome c oxidoreductase, Biochim. Biophys. Acta, 1983, 723, 91–103.

    Article  PubMed  Google Scholar 

  48. R. Covian, B. L. Trumpower, Rapid electron transfer between monomers when the cytochrome bc1 complex dimer is reduced through center N, J. Biol. Chem., 2005, 280, 22732–40.

    Article  CAS  PubMed  Google Scholar 

  49. X. Gong, L. Yu, D. Xia, C. A. Yu, Evidence for electron equilibrium between the two hemes bL in the dimeric cytochrome bc1 complex, J. Biol. Chem., 2005, 280, 9251–57.

    Article  CAS  PubMed  Google Scholar 

  50. W. Junge and J. B. Jackson, The development of electrochemical potential gradients across photosynthetic membranes, in Photosynthesis, ed. Govindjee, Academic Press, New York, 1982, vol. 1, pp. 589–646.

    Chapter  Google Scholar 

  51. A. R. Crofts, C. A. Wraight, The electrochemical domain of photosynthesis, Biochim. Biophys. Acta, 1983, 726, 149–85.

    Article  CAS  Google Scholar 

  52. J. B. Jackson, Bacterial photosynthesis, in Bacterial energy transduction, ed. C. Anthony, Academic Press, London, 1988, pp. 317–376.

    Google Scholar 

  53. S. S. Klishin, W. Junge, A. Y. Mulkidjanian, Flash-induced turnover of the cytochrome bc1 complex in chromatophores of Rhodobacter capsulatus: binding of Zn2+ decelerates likewise the oxidation of cytochrome b, the reduction of cytochrome c1 and the voltage generation, Biochim. Biophys. Acta, 2002, 1553, 177–82.

    Article  CAS  PubMed  Google Scholar 

  54. W. W. Parson, Bacterial photosynthesis, Annu. Rev. Microbiol., 1974, 28, 41–59.

    Article  CAS  PubMed  Google Scholar 

  55. P. L. Dutton and R. C. Prince, Reaction center driven cytochrome interactions in electron and proton translocation and energy conservation, in The Photosynthetic Bacteria, ed. R. K. Clayton and W. R. Sistrom, Plenum Press, New York, 1978, pp. 525–570.

    Google Scholar 

  56. C. A. Wraight, R. J. Cogdell and B. Chance, Ion transport and electrochemical gradients in photosynthetic bacteria, in The Photosynthetic Bacteria, ed. R. K. Clayton and W. R. Sistrom, Plenum Press, New York, 1978, pp. 471–511.

    Google Scholar 

  57. J. B. Jackson, A. R. Crofts, The kinetics of light induced carotenoid changes in Rhodopseudomonas sphaeroides and their relation to electrical field generation across the chromatophore membrane, Eur. J. Biochem., 1971, 18, 120–30.

    Article  CAS  PubMed  Google Scholar 

  58. L. A. Drachev, M. D. Mamedov, A. Y. Mulkidjanian, A. Y. Semenov, V. P. Shinkarev, M. I. Verkhovsky, B. S. Kaurov, V. P. Skulachev, Flash-induced electrogenic events in the photosynthetic reaction center and cytochrome bc1-complex of Rhodobacter sphaeroides chromatophores, Biochim. Biophys. Acta, 1989, 973, 189–97.

    Article  CAS  Google Scholar 

  59. A. Y. Mulkidjanian, M. D. Mamedov, A. Y. Semenov, V. P. Shinkarev, M. I. Verkhovsky, L. A. Drachev, Partial reversion of electrogenic reaction in ubiquinol: cytochrome c2 oxidoreductase of Rhodobacter sphaeroides under the neutral and alkaline conditions, FEBS Lett., 1990, 277, 127–30.

    Article  PubMed  Google Scholar 

  60. D. E. Robertson, H. Ding, P. R. Chelminski, C. Slaughter, J. Hsu, C. Moomaw, M. Tokito, F. Daldal, P. L. Dutton, Hydroubiquinone–cytochrome c2 oxidoreductase from Rhodobacter capsulatus: definition of a minimal, functional isolated preparation, Biochemistry, 1993, 32, 1310–17.

    Article  CAS  PubMed  Google Scholar 

  61. R. B. Gennis, B. Barquera, B. Hacker, S. R. Van Doren, S. Arnaud, A. R. Crofts, E. Davidson, K. A. Gray, F. Daldal, The bc1 complexes of Rhodobacter sphaeroides and Rhodobacter capsulatus, J. Bioenerg. Biomembr., 1993, 25, 195–209.

    Article  CAS  PubMed  Google Scholar 

  62. G. Brasseur, A. S. Saribas, F. Daldal, A compilation of mutations located in the cytochrome b subunit of the bacterial and mitochondrial bc1 complex, Biochim. Biophys. Acta, 1996, 1275, 61–69.

    Article  PubMed  Google Scholar 

  63. S. G. E. Andersson, A. Zomorodipour, J. O. Andersson, T. Sicheritz-Ponten, U. C. M. Alsmark, R. M. Podowski, A. K. Naslund, A. S. Eriksson, H. H. Winkler, C. G. Kurland, The genome sequence of Rickettsia prowazekii and the origin of mitochondria, Nature, 1998, 396, 133–40.

    Article  CAS  PubMed  Google Scholar 

  64. The Photosynthetic Bacteria, ed. R. K. Clayton and W. R. Sistrom, Plenum Press, New York, 1978.

    Google Scholar 

  65. J. R. Bowyer, A. R. Crofts, On the mechanism of photosynthetic electron transfer in Rhodopseudomonas capsulata and Rhodopseudomonas sphaeroides, Biochim. Biophys. Acta, 1981, 636, 218–33.

    Article  CAS  PubMed  Google Scholar 

  66. D. P. O’Keefe, P. L. Dutton, Cytochrome b oxidation and reduction reactions in the ubiquinone–cytochrome b/c2 oxidoreductase from Rhodopseudomonas sphaeroides, Biochim. Biophys. Acta, 1981, 635, 149–66.

    Article  PubMed  Google Scholar 

  67. G. Venturoli, J. G. Fernandez-Velasco, A. R. Crofts, B. A. Melandri, Demonstration of a collisional interaction of ubiquinol with the ubiquinol–cytochrome c2 oxidoreductase complex in chromatophores from Rhodobacter sphaeroides, Biochim. Biophys. Acta, 1986, 851, 340–52.

    Article  CAS  PubMed  Google Scholar 

  68. A. Y. Mulkidjanian, W. Junge, Calibration and time resolution of lumenal pH-transients in chromatophores of Rhodobacter capsulatus following a single turnover flash of light: proton release by the cytochrome bc1-complex is strongly electrogenic, FEBS Lett., 1994, 353, 189–93.

    Article  CAS  PubMed  Google Scholar 

  69. A. Y. Mulkidjanian and W. Junge, Electrogenic proton displacements in the cytochrome bc1 complex of Rhodobacter capsulatus, in Photosynthesis: from Light to Biosphere, ed. P. Mathis, Kluwer Academic Publishers, Dordrecht, 1995, pp. 547–550.

    Google Scholar 

  70. O. A. Gopta and A. Y. Mulkidjanian, The cytochrome bc1-complex of Rhodobacter capsulatus: does the reaction in the presence of antimycin A correspond to a single turnover of an untreated enzyme? in Photosynthesis: Mechanisms and Effects, ed. G. Garab, Kluwer Academic Publishers, Dordrecht, 1998, pp. 1533–1536.

    Chapter  Google Scholar 

  71. K. I. Takamiya, P. L. Dutton, Ubiquinone in Rhodopseudomonas sphaeroides. Some thermodynamic properties, Biochim. Biophys. Acta, 1979, 546, 1–16.

    Article  CAS  PubMed  Google Scholar 

  72. S. Meinhardt, A. R. Crofts, Kinetic and thermodynamic resolution of cytochrome c1 and cytochrome c2 from Rhodopseudomonas sphaeroides, FEBS Lett., 1982, 149, 223–27.

    Article  CAS  Google Scholar 

  73. D. E. Robertson, P. L. Dutton, The nature and magnitude of the charge-separation reactions of ubiquinol cytochrome c2 oxidoreductase, Biochim. Biophys. Acta, 1988, 935, 273–91.

    Article  CAS  PubMed  Google Scholar 

  74. J. B. Jackson, A. R. Crofts, High energy state in chromatophores of Rhodopseudomonas sphaeroides, FEBS Lett., 1969, 4, 185–89.

    Article  CAS  PubMed  Google Scholar 

  75. R. J. Cogdell, J. B. Jackson, A. R. Crofts, The effect of redox potential on the coupling between rapid hydrogen-ion binding and electron transport in chromatophores from Rhodopseudomonas spheroides, J. Bioenerg, 1973, 4, 211–27.

    Article  CAS  PubMed  Google Scholar 

  76. J. B. Jackson, P. L. Dutton, The kinetic and redox potentiometric resolution of the carotenoid shifts in Rhodopseudomonas sphaeroides chromatophores: their relationship to electric field alterations in electron transport and energy coupling, Biochim. Biophys. Acta, 1973, 325, 102–13.

    Article  CAS  PubMed  Google Scholar 

  77. R. C. Prince, P. L. Dutton, Single and multiple turnover reactions in the ubiquinone-cytochrome bc2 oxidoreductase of Rhodopseudomonas sphaeroides: the physical chemistry of the major electron donor to cytochrome c2, and its coupled reactions, Biochim. Biophys. Acta, 1977, 462, 731–47.

    Article  CAS  PubMed  Google Scholar 

  78. K. Takamiya, R. C. Prince, P. L. Dutton, The recognition of a special ubiquinone functionally central in the ubiquinone–cytochrome bc2 oxidoreductase, J. Biol. Chem., 1979, 254, 11307–11.

    Article  CAS  PubMed  Google Scholar 

  79. C. L. Bashford, R. C. Prince, K. I. Takamiya, P. L. Dutton, Electrogenic events in the ubiquinone–cytochrome b/c2 oxidoreductase of Rhodopseudomonas sphaeroides, Biochim. Biophys. Acta, 1979, 545, 223–35.

    Article  CAS  PubMed  Google Scholar 

  80. J. R. Bowyer, P. L. Dutton, R. C. Prince, A. R. Crofts, The role of the Rieske iron–sulfur center as the electron donor to ferricytochrome c2 in Rhodopseudomonas sphaeroides, Biochim. Biophys. Acta, 1980, 592, 445–60.

    Article  CAS  PubMed  Google Scholar 

  81. W. A. Cramer and A. R. Crofts, Electron and proton transport, in Photosynthesis, ed. Govindjee, Academic Press, New York, 1982, vol. 1, pp. 387–467.

    Chapter  Google Scholar 

  82. A. R. Crofts, S. W. Meinhardt, K. R. Jones, M. Snozzi, The role of the quinone pool in the cyclic electron transfer chain of Rhodopseudomonas sphaeroides, Biochim. Biophys. Acta, 1983, 723, 202–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. P. B. Garland, R. A. Clegg, D. Boxer, J. A. Downie and B. A. Haddock, Proton-translocating nitrate reductase of Escherichia coli, in Electron Transfer Chains and Oxidative Phosphorylation, ed. E. Quagliariello, S. Papa, F. Palmieri, E. C. Slater and N. Siliprandi, North-Holland Publishing, Amsterdam, 1975, pp. 351–358.

    Google Scholar 

  84. D. E. Robertson, R. C. Prince, J. R. Bowyer, K. Matsuura, P. L. Dutton, T. Ohnishi, Thermodynamic properties of the semiquinone and its binding site in the ubiquinol–cytochrome c (c2) oxidoreductase of respiratory and photosynthetic systems, J. Biol. Chem., 1984, 259, 1758–63.

    Article  CAS  PubMed  Google Scholar 

  85. E. G. Glaser, A. R. Crofts, A new electrogenic step in the ubiquinol:cytochrome c2 oxidoreductase complex of Rhodopseudomonas sphaeroides, Biochim. Biophys. Acta, 1984, 766, 322–33.

    Article  CAS  PubMed  Google Scholar 

  86. M. Saraste, Location of haem-binding sites in the mitochondrial cytochrome b, FEBS Lett., 1984, 166, 367–72.

    Article  CAS  PubMed  Google Scholar 

  87. A. R. Crofts, H. H. Robinson, K. Andrews, S. Van Doren and E. Berry, Catalytic sites for reduction and oxidation of quinones, in Cytochrome Systems: Molecular Biology and Bioenergetics, ed. S. Papa, B. Chance and L. Ernster, Plenum Publisher, New York, 1987, pp. 617–624.

    Chapter  Google Scholar 

  88. E. Glaser and A. R. Crofts, Studies of the electrogenicity of the reduction of cytochrome b561 through the antimycin-sensitive site of the ubiquinol–cytochrome c2 complex of Rhodobacter sphaeroides, in Cytochrome systems: Molecular Biology and Bioenergetics, ed. S. Papa, B. Chance and L. Ernster, Plenum Press, New York, 1988, pp. 625–631.

    Google Scholar 

  89. V. P. Shinkarev, A. L. Drachev, M. D. Mamedov, A. Y. Mulkidjanian, A. Y. Semenov and M. I. Verkhovsky, Light-induced electron transfer and electrogenic reactions in the bc1-complex of photosynthetic purple bacterium Rhodobacter sphaeroides, in Molecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria, ed. G. Drews and E. A. Dawes, Plenum Press, New York, 1990, pp. 393–400.

    Chapter  Google Scholar 

  90. E. G. Glaser, S. W. Meinhardt, A. R. Crofts, Reduction of cytochrome b-561 through the antimycin-sensitive site of the ubiquinol–cytochrome c2 oxidoreductase complex of Rhodopseudomonas sphaeroides, FEBS Lett., 1984, 178, 336–42.

    Article  CAS  PubMed  Google Scholar 

  91. D. E. Robertson, K. M. Giangiacomo, S. de Vries, C. C. Moser, P. L. Dutton, Two distinct quinone-modulated modes of antimycin-sensitive cytochrome b reduction in the cytochrome bc1 complex, FEBS Lett., 1984, 178, 343–50.

    Article  CAS  PubMed  Google Scholar 

  92. A. A. Konstantinov and E. Popova, Topography and Protonmotive Mechanism of Mitochondrial Coupling Site 2, in Cytochrome systems: Molecular Biology and Bioenergetics, ed. S. Papa, B. Chance and L. Ernster, Plenum Press, New York, 1988, pp. 751–765.

    Google Scholar 

  93. A. A. Konstantinov, Vectorial electron and proton transfer in the cytochrome bc1 complex, Biochim. Biophys. Acta, 1990, 1018, 138–41.

    Article  CAS  PubMed  Google Scholar 

  94. P. Mitchell, The classical mobile carrier function of lipophilic quinones in the osmochemistry of electron-driven proton translocation, in Highlights in Ubiquinone Research, ed. G. Lenaz, Taylor and Francis, London, 1990, pp. 77–82.

    Google Scholar 

  95. A. Y. Mulkidjanian, M. D. Mamedov, L. A. Drachev, Slow electrogenic events in the cytochrome bc1-complex of Rhodobacter sphaeroides: The electron transfer between cytochrome b hemes can be non-electrogenic, FEBS Lett., 1991, 284, 227–31.

    Article  PubMed  Google Scholar 

  96. A. Y. Semenov, D. A. Bloch, A. R. Crofts, L. A. Drachev, R. B. Gennis, A. Y. Mulkidjanian, C.-H. Yun, V. P. Shinkarev, M. I. Verkhovsky, B. S. Kaurov, V. P. Skulachev, Electrogenic events in chromatophores from Rhodobacter sphaeroides lacking high-potential cytochrome b of the bc1-complex, Biochim. Biophys. Acta, 1992, 1101, 166–67.

    CAS  Google Scholar 

  97. A. Y. Mulkidjanian, M. I. Verkhovsky, V. P. Shinkarev, V. D. Sled’, N. P. Grishanova, B. S. Kaurov, Study of photosynthetic electron transfer reactions by redox probes: Electron transport in non-sulfur purple bacteria, Biokhimiya, 1985, 50, 1786–96.

    Google Scholar 

  98. R. Mitchell, P. R. Rich, Proton uptake by cytochrome c oxidase on reduction and on ligand binding, Biochim. Biophys. Acta, 1994, 1186, 19–26.

    Article  CAS  PubMed  Google Scholar 

  99. B. Chance, A. R. Crofts, M. Nishimura, B. Price, Fast membrane H+ binding in the light-activated state of Chromatium chromatophores, Eur. J. Biochem., 1970, 13, 364–74.

    Article  CAS  PubMed  Google Scholar 

  100. M. A. Taylor, J. B. Jackson, Rapid proton release accompanying photosynthetic electron transport in intact cells of Rhodopseudomonas capsulata, FEBS Lett., 1985, 180, 145–49.

    Article  CAS  Google Scholar 

  101. M. R. Jones, J. B. Jackson, Proton release by the quinol oxidase site of the cytochrome b/c1 complex following single turnover flash excitation of intact cells of Rhodobacter capsulatus, Biochim. Biophys. Acta, 1989, 975, 34–43.

    Article  CAS  Google Scholar 

  102. M. R. Jones, J. B. Jackson, Proton efflux from right-side-out membrane vesicles of Rhodobacter sphaeroides after short flashes, Biochim. Biophys. Acta, 1990, 1019, 51–58.

    Article  CAS  Google Scholar 

  103. K. M. Petty, P. L. Dutton, Properties of the flash-induced proton binding encountered in membranes of Rhodopseudomonas sphaeroides: a functional p K on the ubisemiquinone?, Arch. Biochem. Biophys., 1976, 172, 335–45.

    Article  CAS  PubMed  Google Scholar 

  104. K. M. Petty, P. L. Dutton, Ubiquinone–cytochrome b electron and proton transfer: a functional p K on cytochrome b50 in Rhodopseudomonas sphaeroides membranes, Arch. Biochem. Biophys., 1976, 172, 346–53.

    Article  CAS  PubMed  Google Scholar 

  105. K. M. Petty, J. B. Jackson, P. L. Dutton, Kinetics and stoichiometry of proton binding in Rhodopseudomonas sphaeroides chromatophores, FEBS Lett., 1977, 84, 299–303.

    Article  CAS  PubMed  Google Scholar 

  106. K. Petty, J. B. Jackson, P. L. Dutton, Factors controlling the binding of two protons per electron transferred through the ubiquinone and cytochrome b/c2 segment of Rhodopseudomonas sphaeroides chromatophores, Biochim. Biophys. Acta, 1979, 546, 17–42.

    Article  CAS  PubMed  Google Scholar 

  107. K. Matsuura, D. P. O’Keefe, P. L. Dutton, A reevaluation of the events leading to the electrogenic reaction and proton translocation in the ubiquinol–cytochrome c oxidoreductase of Rhodopseudomonas sphaeroides, Biochim. Biophys. Acta, 1983, 722, 12–22.

    Article  CAS  Google Scholar 

  108. S. Saphon, P. Gräber, External proton uptake, internal proton release and internal pH changes in chromatophores from Rps. sphaeroides following single turnover flashes, Z. Naturforsch., C: Biosci., 1978, 33C, 715–22.

    Article  CAS  Google Scholar 

  109. C. C. Moser, J. M. Keske, K. Warncke, R. S. Farid, P. L. Dutton, Nature of biological electron transfer, Nature, 1992, 355, 796–802.

    Article  CAS  PubMed  Google Scholar 

  110. V. P. Skulachev, V. V. Chistyakov, A. A. Jasaitis, E. G. Smirnova, Inhibition of the respiratory chain by zinc ions, Biochem. Biophys. Res. Commun., 1967, 26, 1–6.

    Article  CAS  PubMed  Google Scholar 

  111. T. A. Link, G. von Jagow, Zinc ions inhibit the QP center of bovine heart mitochondrial bc1 complex by blocking a protonatable group, J. Biol. Chem., 1995, 270, 25001–06.

    Article  CAS  PubMed  Google Scholar 

  112. S. S. Klishin, D. A. Cherepanov and A. Y. Mulkidjanian, Resolution of proton and electron transfer events in the photosynthetic reaction center and the cytochrome-bc1 complex of phototrophic bacteria, in PS2001. 12th International Congress of Photosynthesis, Brisbane, 2001, pp. S12–005.

    Google Scholar 

  113. S. S. Klishin and A. Y. Mulkidjanian, Proton transfer paths at the quinol oxidizing site of the Rb. capsulatus cytochrome bc complex, in Photosynthesis: Fundamental aspects to global perspectives, ed. A. van der Est and D. Bruce, Montreal, vol. 1, 2005, pp. 260–262.

    Google Scholar 

  114. S. S. Klishin, Resolution of Partial Steps in the Catalytic Cycle of Rhodobacter capsulatus Cytochrome bc1 Complex with Help of Zinc Ions, PhD Thesis, Lomonosov University, Moscow, 2005.

    Google Scholar 

  115. P. L. Dutton, J. B. Jackson, Thermodynamic and kinetic characterization of electron transfer components in situ in Rhodopseudomonas sphaeroides and Rhodospirillum rubrum, Eur. J. Biochem., 1972, 30, 495–510.

    Article  CAS  PubMed  Google Scholar 

  116. J. N. Siedow, S. Power, F. F. de la Rosa, G. Palmer, The preparation and characterization of highly purified, enzymically active complex III from baker’s yeast, J. Biol. Chem., 1978, 253, 2392–99.

    Article  CAS  PubMed  Google Scholar 

  117. J. C. Salerno, Y. Xu, M. P. Osgood, C. H. Kim, T. E. King, Thermodynamic and spectroscopic characteristics of the cytochrome-bc1 complex—role of quinone in the behavior of cytochrome-b562, J. Biol. Chem., 1989, 264, 15398–403.

    Article  CAS  PubMed  Google Scholar 

  118. P. R. Rich, A. E. Jeal, S. A. Madgwick, A. J. Moody, Inhibitor effects on redox-linked protonations of the b haems of the mitochondrial bc1 complex, Biochim. Biophys. Acta, 1990, 1018, 29–40.

    Article  CAS  PubMed  Google Scholar 

  119. F. F. de la Rosa, G. Palmer, Reductive titration of CoQ-depleted Complex III from baker’s yeast. Evidence for an exchange-coupled complex between QH˙ and low-spin ferricytochrome b, FEBS Lett., 1983, 163, 140–43.

    Article  PubMed  Google Scholar 

  120. S. de Vries, The pathway of electron transfer in the dimeric QH2: cytochrome c oxidoreductase, J. Bioenerg. Biomembr., 1986, 18, 195–224.

    Article  PubMed  Google Scholar 

  121. S. W. Meinhardt, X. H. Yang, B. L. Trumpower, T. Ohnishi, Identification of a stable ubisemiquinone and characterization of the effects of ubiquinone oxidation–reduction status on the Rieske iron–sulfur protein in the three-subunit ubiquinol–cytochrome c oxidoreductase complex of Paracoccus denitrificans, J. Biol. Chem., 1987, 262, 8702–06.

    Article  CAS  PubMed  Google Scholar 

  122. S. de Vries, J. A. Berden, E. C. Slater, Properties of a semiquinone anion located in the QH2:cytochrome c oxidoreductase segment of the mitochondrial respiratory chain, FEBS Lett., 1980, 122, 143–48.

    Article  PubMed  Google Scholar 

  123. A. R. Crofts, The mechanism of the ubiquinol:cytochrome c oxidoreductases of mitochondria and of Rhodopseudomonas sphaeroides, in The Enzymes of Biological Membranes. Vol. 4. Bioenergetics of Electron and Proton Transport, ed. A. N. Martonosi, Plenum Press, New York and London, 1985, pp. 347–382.

    Chapter  Google Scholar 

  124. A. Y. Mulkidjanian, V. P. Shinkarev, M. I. Verkhovsky, B. S. Kaurov, A study of kinetic properties of the stable semiquinone of the reaction center secondary acceptor in chromatophores of nonsulfur purple bacteria, Biochim. Biophys. Acta, 1986, 849, 150–61.

    Article  Google Scholar 

  125. A. R. Crofts, V. P. Shinkarev, D. R. Kolling, S. Hong, The modified Q-cycle explains the apparent mismatch between the kinetics of reduction of cytochrome c1 and bh in the bc1 complex, J. Biol. Chem., 2003, 278, 36191–201.

    Article  CAS  PubMed  Google Scholar 

  126. K. Takamiya, P. L. Dutton, The influence of transmembrane potentials of the redox equilibrium between cytochrome c2 and the reaction center in Rhodopseudomonas sphaeroides chromatophores, FEBS Lett., 1977, 80, 279–84.

    Article  CAS  PubMed  Google Scholar 

  127. D. A. Cherepanov, L. I. Krishtalik, A. Y. Mulkidjanian, Photosynthetic electron transfer controlled by protein relaxation: analysis by Langevin stochastic approach, Biophys. J., 2001, 80, 1033–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. V. P. Shinkarev, A. R. Crofts, C. A. Wraight, The electric field generated by photosynthetic reaction center induces rapid reversed electron transfer in the bc1 complex, Biochemistry, 2001, 40, 12584–90.

    Article  CAS  PubMed  Google Scholar 

  129. B. A. Feniouk, M. A. Kozlova, D. A. Knorre, D. A. Cherepanov, A. Y. Mulkidjanian, W. Junge, The proton driven rotor of ATP synthase: Ohmic conductance (10 fS), and absence of voltage gating, Biophys. J., 2004, 86, 665–80.

    Article  CAS  Google Scholar 

  130. S. Izrailev, A. R. Crofts, E. A. Berry, K. Schulten, Steered molecular dynamics simulation of the Rieske subunit motion in the cytochrome bc1 complex, Biophys. J., 1999, 77, 1753–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. M. L. Paddock, L. Sagle, A. Tehrani, J. T. Beatty, G. Feher, M. Y. Okamura, Mechanism of proton transfer inhibition by Cd2+ binding to bacterial reaction centers: determination of the p KA of functionally important histidine residues, Biochemistry, 2003, 42, 9626–32.

    Article  CAS  PubMed  Google Scholar 

  132. D. A. Mills, B. Schmidt, C. Hiser, E. Westley, S. Ferguson-Miller, Membrane potential-controlled inhibition of cytochrome c oxidase by zinc, J. Biol. Chem., 2002, 277, 14894–901.

    Article  CAS  PubMed  Google Scholar 

  133. A. Aagaard, A. Namslauer, P. Brzezinski, Inhibition of proton transfer in cytochrome c oxidase by zinc ions: delayed proton uptake during oxygen reduction, Biochim. Biophys. Acta, 2002, 1555, 133–39.

    Article  CAS  PubMed  Google Scholar 

  134. T. E. DeCoursey, Voltage-gated proton channels and other proton transfer pathways, Physiol. Rev., 2003, 83, 475–579.

    Article  CAS  PubMed  Google Scholar 

  135. E. A. Berry, Z. Zhang, H. D. Bellamy, L. Huang, Crystallographic location of two Zn2+-binding sites in the avian cytochrome bc1 complex, Biochim. Biophys. Acta, 2000, 1459, 440–48.

    Article  CAS  PubMed  Google Scholar 

  136. A. Y. Mulkidjanian, Proton in the well and through the desolvation barrier, Biochim. Biophys. Acta, 2006, 1757, 415–27.

    Article  CAS  PubMed  Google Scholar 

  137. L. Giachini, F. Francia, D.-W. Lee, F. Daldal, L.-S. Huang, E. A. Berry, T. Cocco, S. Papa, F. Boscherini, G. Venturoli, X-Ray absorption studies of Zn2+ binding sites in bacterial, avian and bovine cytochrome bc1 complexes, Biochim. Biophys. Acta, 2006, 1757Supplement 1, 14th EBEC Short Reports, 169–170.

    Google Scholar 

  138. E. Darrouzet, F. Daldal, Movement of the iron–sulfur subunit beyond the ef loop of cytochrome b is required for multiple turnovers of the bc1 complex but not for single turnover QO site catalysis, J. Biol. Chem., 2002, 277, 3471–76.

    Article  CAS  PubMed  Google Scholar 

  139. E. Darrouzet, F. Daldal, Protein–protein interactions between cytochrome b and the Fe–S protein subunits during QH2 oxidation and large-scale domain movement in the bc1 complex, Biochemistry, 2003, 42, 1499–507.

    Article  CAS  PubMed  Google Scholar 

  140. T. E. King, C. A. Yu, L. Yu and Y. L. Chiang, An examination of the components, sequence, mechanisms and their uncertainties involved in mitochondrial electron transport from succinate to cytochrome c, in Electron Transfer Chain and Oxidative Phosphorylation, ed. E. Quagliariello, S. Papa, F. Palmieri, E. C. Slater and N. Siliprandi, North-Holland Publ. Co, Amsterdam, 1975, pp. 105–118.

    Google Scholar 

  141. C. H. Snyder, B. L. Trumpower, Ubiquinone at center N is responsible for triphasic reduction of cytochrome b in the cytochrome bc1 complex, J. Biol. Chem., 1999, 274, 31209–16.

    Article  CAS  PubMed  Google Scholar 

  142. K. C. Hansen, B. E. Schultz, G. Wang, S. I. Chan, Reaction of Escherichia coli cytochrome bo3 and mitochondrial cytochrome bc1 with a photoreleasable decylubiquinol, Biochim. Biophys. Acta, 2000, 1456, 121–37.

    Article  CAS  PubMed  Google Scholar 

  143. M. Wikstrom, K. Krab, M. Saraste, Proton-translocating cytochrome complexes, Annu. Rev. Biochem., 1981, 50, 623–55.

    Article  CAS  PubMed  Google Scholar 

  144. E. Darrouzet, M. Valkova-Valchanova, F. Daldal, The [2Fe–2S] cluster Em as an indicator of the iron–sulfur subunit position in the ubihydroquinone oxidation site of the cytochrome bc1 complex, J. Biol. Chem., 2002, 277, 3464–70.

    Article  CAS  PubMed  Google Scholar 

  145. V. P. Shinkarev, D. R. J. Kolling, T. J. Miller, A. R. Crofts, Modulation of the midpoint potential of the [2Fe–2S] Rieske iron sulfur center by QO occupants in the bc1 complex, Biochemistry, 2002, 41, 14372–82.

    Article  CAS  PubMed  Google Scholar 

  146. J. W. Cooley, T. Ohnishi, F. Daldal, Binding dynamics at the quinone reduction (Qi) site influence the equilibrium interactions of the iron sulfur protein and hydroquinone oxidation (QO) site of the cytochrome bc1 complex, Biochemistry, 2005, 44, 10520–32.

    Article  CAS  PubMed  Google Scholar 

  147. M. Valkova-Valchanova, E. Darrouzet, C. R. Moomaw, C. A. Slaughter, F. Daldal, Proteolytic cleavage of the Fe–S subunit hinge region of Rhodobacter capsulatus bc1 complex: effects of inhibitors and mutations, Biochemistry, 2000, 39, 15484–92.

    Article  CAS  PubMed  Google Scholar 

  148. P. R. Rich, Electron and proton transfers through quinones and cytochrome bc complexes, Biochim. Biophys. Acta, 1984, 768, 53–79.

    Article  CAS  PubMed  Google Scholar 

  149. D. E. Robertson, E. Davidson, R. C. Prince, W. H. van den Berg, B. L. Marrs, P. L. Dutton, Discrete catalytic sites for quinone in the ubiquinol–cytochrome c2 oxidoreductase of Rhodopseudomonas capsulata. Evidence from a mutant defective in ubiquinol oxidation, J. Biol. Chem., 1986, 261, 584–91.

    Article  CAS  PubMed  Google Scholar 

  150. K. Matsuura, J. R. Bowyer, T. Ohnishi, P. L. Dutton, Inhibition of electron transfer by 3-alkyl-2-hydroxy-1,4-naphthoquinones in the ubiquinol–cytochrome c oxidoreductases of Rhodopseudomonas sphaeroides and mammalian mitochondria. Interaction with a ubiquinone-binding site and the Rieske iron–sulfur cluster, J. Biol. Chem., 1983, 258, 1571–79.

    Article  CAS  PubMed  Google Scholar 

  151. H. Ding, D. E. Robertson, F. Daldal, P. L. Dutton, Cytochrome bc1 complex [2Fe–2S] cluster and its interaction with ubiquinone and ubihydroquinone at the Qo site: a double-occupancy Qo site model, Biochemistry, 1992, 31, 3144–58.

    Article  CAS  PubMed  Google Scholar 

  152. W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graphics, 1996, 14, 33–38.

    Article  CAS  Google Scholar 

  153. A. Y. Mulkidjanian, J. Heberle, D. A. Cherepanov, Protons @ interfaces: Implications for biological energy conversion, Biochim. Biophys. Acta, 2006, 1757, 913–30.

    Article  CAS  PubMed  Google Scholar 

  154. S. S. Klishin, S. S., A. Y. Mulkidjanian, Breaking down the flash-induced turnover of the cytochrome bc1 complex into separate steps, Biochim. Biophys. Acta, 2004, 1658Supplement 1, 13th EBEC Short Reports, 170.

    Google Scholar 

  155. N. Gabellini, G. Hauska, Characterization of cytochrome b in the isolated ubiquinol–cytochrome c2 oxidoreductase from Rhodopseudomonas sphaeroides GA, FEBS Lett., 1983, 153, 146–50.

    Article  CAS  PubMed  Google Scholar 

  156. G. Hauska, E. Hurt, N. Gabellini, W. Lockau, Comparative aspects of quinol–cytochrome c/plastocyanin oxidoreductases, Biochim. Biophys. Acta, 1983, 726, 97–133.

    Article  CAS  PubMed  Google Scholar 

  157. D. A. Cherepanov, W. Junge, A. Y. Mulkidjanian, Proton transfer dynamics at the membrane/water interface: Dependence on the fixed and mobile pH buffers, the geometry of membrane particles, and the interfacial potential barrier, Biophys. J., 2004, 86, 665–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. M. B. Partenskii, P. C. Jordan, Theoretical perspectives on ion-channel electrostatics: continuum and microscopic approach, Q. Rev. Biophys., 1992, 25, 477–510.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armen Y. Mulkidjanian.

Additional information

Submitted as part of the special issue ‘Proton Transfer in Biological Systems’, Photochem. Photobiol. Sci., 2006, 5(6).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulkidjanian, A.Y. Proton translocation by the cytochrome bc1 complexes of phototrophic bacteria: introducing the activated Q-cycle. Photochem Photobiol Sci 6, 19–34 (2007). https://doi.org/10.1039/b517522d

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b517522d

Navigation