Skip to main content

Advertisement

Log in

Granal stacking of thylakoid membranes in higher plant chloroplasts: the physicochemical forces at work and the functional consequences that ensue

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The formation of grana in chloroplasts of higher plants is examined in terms of the subtle interplay of physicochemical forces of attraction and repulsion. The attractive forces between two adjacent membranes comprise (1) van der Waals attraction that depends on the abundance and type of atoms in each membrane, on the distance between the membranes and on the dielectric constant, (2) depletion attraction that generates local order by granal stacking at the expense of greater disorder (i.e. entropy) in the stroma, and (3) an electrostatic attraction of opposite charges located on adjacent membranes. The repulsive forces comprise (1) electrostatic repulsion due to the net negative charge on the outer surface of thylakoid membranes, (2) hydration repulsion that operates at small separations between thylakoid membranes due to layers of bound water molecules, and (3) steric hindrance due to bulky protrusions of Photosystem I (PSI) and ATP synthase into the stroma. In addition, specific interactions may occur, but they await experimental demonstration. Although grana are not essential for photosynthesis, they are ubiquitous in higher plants. Grana may have been selected during evolution for the functional advantages that they confer on higher plants. The functional consequences of grana stacking include (1) enhancement of light capture through a vastly increased area-to-volume ratio and connectivity of several PSIIs with large functional antenna size, (2) the ability to control the lateral separation of PSI from PSII and, therefore, the balanced distribution of excitation energy between two photosystems working in series, (3) the reversible fine-tuning of energy distribution between the photosystems by State 1-State 2 transitions, (4) the ability to regulate light-harvesting via controlled thermal dissipation of excess excitation energy, detected as non-photochemical quenching, (5) dynamic flexibility in the light reactions mediated by a granal structure in response to regulation by a trans-thylakoid pH gradient, (6) delaying the premature degradation of D1 and D2 reaction-centre protein(s) in PSII by harbouring photoinactived PSIIs in appressed granal domains, (7) enhancement of the rate of non-cyclic synthesis of adenosine triphosphate (ATP) as well as the regulation of non-cyclic vs. cyclic ATP synthesis, and (8) the potential increase of photosynthetic capacity for a given composition of chloroplast constituents in full sunlight, concomitantly with enhancement of photochemical efficiency in canopy shade. Hence chloroplast ultrastructure and function are intimately intertwined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Mustárdy and G. Garab, Granum revisited. A three-dimensional model-where things fall into place Trends Plant Sci. 2003 8 117–122

    Article  PubMed  CAS  Google Scholar 

  2. J. Barber, Membrane surface charges and potentials in relation to photosynthesis Biochim. Biophys. Acta 1980 594 253–308

    Article  CAS  PubMed  Google Scholar 

  3. F. V. Mercer, A. J. Hodge, A. B. Hope and J. D. McLean, The structure and swelling properties of Nitella chloroplasts Aust. J. Biol. Sci. 1955 8 1–18

    Article  CAS  Google Scholar 

  4. J. Barber, Influence of surface charges on thylakoid structure and function Ann. Rev. Plant Physiol. 1982 33 261–295

    Article  CAS  Google Scholar 

  5. W. S. Chow, L. Qian, D. J. Goodchild and J. M. Anderson, Photosynthetic acclimation of Alocasia macrorrhiza (L.) G. Don to growth irradiance: structure, function and composition of chloroplasts Aust. J. Plant Physiol. 1988 15 107–122

    CAS  Google Scholar 

  6. W. S. Chow, S. W. Thorne, J. T. Duniec, M. J. Sculley and N. K. Boardman, The stacking of chloroplast thylakoids. Effects of cation screening and binding, studied by the digitonin method Arch. Biochem. Biophys. 1980 201 347–355

    Article  CAS  PubMed  Google Scholar 

  7. J. Barber and W. S. Chow, A mechanism for controlling the stacking and unstacking of chloroplast thylakoid membranes FEBS Lett. 1979 105 5–10

    Article  CAS  Google Scholar 

  8. S. Izawa and N. E. Good, Effect of salts and electron transport on the conformation of isolated chloroplasts. II. Electron microscopy Plant Physiol. 1966 41 544–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. S. Murakami and L. Packer, Protonation and chloroplast membrane structure J. Cell Biol. 1970 47 332–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. B. T. Rubin, W. S. Chow and J. Barber, Experimental and theoretical considerations of mechanisms controlling cation effects on thylakoid membrane stacking and chlorophyll fluorescence Biochim. Biophys. Acta 1981 634 174–190

    Article  CAS  PubMed  Google Scholar 

  11. E. L. Gross and S. H. Prasher, Correlation between monovalent cation induced decrease in chlorophyll a fluorescence and chloroplast structural changes Arch. Biochem. Biophys. 1974 164 460–468

    Article  CAS  PubMed  Google Scholar 

  12. J. T. Duniec and S. W. Thorne, An analysis of the effect of mono- and di-valent cations on the forces between charged lipid membranes with special reference to the grana thylakoids of chloroplasts J. Theor. Biol. 1979 79 473–484

    Article  CAS  PubMed  Google Scholar 

  13. J. Barber, J. Mills and A. Love, Electrical diffuse layers and their influence on photosynthetic processes FEBS Lett. 1977 74 174–181

    Article  CAS  PubMed  Google Scholar 

  14. B. T. Rubin and J. Barber, The role of membrane surface charge in the control of photosynthetic processes and the involvement of electrostatic screening Biochim. Biophys. Acta 1980 592 87–102

    Article  CAS  PubMed  Google Scholar 

  15. W. S. Chow, C. Miller and J. M. Anderson, Surface charges, the heterogeneous lateral distribution of the two photosystems, and thylakoid stacking Biochim. Biophys. Acta 1991 1057 69–77

    Article  CAS  Google Scholar 

  16. M. J. Sculley, J. T. Duniec, S. W. Thorne, W. S. Chow and N. K. Boardman, Quantitative analysis of the balance of forces between thylakoid membranes of chloroplasts, and the role of divalent cations Arch. Biochem. Biophys. 1980 201 339–346

    Article  CAS  PubMed  Google Scholar 

  17. I. M. Nir and D. C. Pease, Chloroplast organisation and the ultrastructural location of Photosystem I and II J. Ultrastruct. Res. 1973 42 534–550

    Article  CAS  PubMed  Google Scholar 

  18. J. P. Dekker and E. J. Boekema, Supramolecular organization of the thylakoid membrane proteins in green plants Biochim. Biophys. Acta 2005 1706 12–39

    Article  CAS  PubMed  Google Scholar 

  19. J. Marra and J. Israelachvili, Direct measurement of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions Biochemistry 1985 24 4608–4618

    Article  CAS  PubMed  Google Scholar 

  20. J. N. Israelachvili and G. E. Adams, Direct measurement of long-range forces between two mica surfaces in aqueous KNO3 solutions Nature 1976 262 774–776

    Article  CAS  Google Scholar 

  21. D. M. LeNeveu, R. P. Rand and V. A. Parsegian, Measurement of forces between lecithin bilayers Nature 1976 259 601–603

    Article  CAS  PubMed  Google Scholar 

  22. A. C. Cowley, N. L. Fuller, R. P. Rand and V. A. Parsegian, Measurement of repulsive forces between charged phospholipids bilayers Biochemistry 1978 17 3163–3168

    Article  CAS  PubMed  Google Scholar 

  23. J. N. Israelachvili and R. M. Pashley, Molecular layering of water at surfaces and origin of repulsive hydration forces Nature 1983 306 249–250

    Article  CAS  Google Scholar 

  24. S. W. Thorne and J. T. Duniec, The physical principles of energy transduction in chloroplasts thylakoid membranes Quart. Rev. Biophys. 1983 16 197–278

    Article  CAS  Google Scholar 

  25. W. S. Chow, Grana formation: entropy-assisted local order in chloroplasts? Aust. J. Plant Physiol. 1999 26 641–647

    CAS  Google Scholar 

  26. L. Onsager, The effect of shape on the interaction of colloid particles Ann. N. Y. Acad. Sci. 1949 51 627–659

    Article  CAS  Google Scholar 

  27. M. Adams, Z. Dogic, S. L. Keller and S. Fraden, Entropically driven microphase transitions in mixtures of colloid rods and spheres Nature 1998 393 349–351

    Article  CAS  Google Scholar 

  28. A. D. Dinsmore, A. G. Yodh and D. J. Pine, Entropic control of particle motion using passive surface microstructures Nature 1996 383 239–242

    Article  CAS  Google Scholar 

  29. E.-H. Kim, W. S. Chow, P. Horton and J. M. Anderson, Entropy-assisted stacking of thylakoid membranes Biochim. Biophys. Acta 2005 1708 187–195

    Article  CAS  PubMed  Google Scholar 

  30. B. Andersson and J. M. Anderson, Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts Biochim. Biophys. Acta 1980 593 427–440

    Article  CAS  PubMed  Google Scholar 

  31. L. A. Stahelin, Reversible particle movement associated with unstacking and restacking of chloroplast membranes in vitro J. Cell Biol. 1976 71 136–158

    Article  Google Scholar 

  32. W. S. Chow, S. W. Thorne, J. T. Duniec, M. J. Sculley and N. K. Boardman, The stacking of chloroplast thylakoids: evidence for segregation of charged groups into nonstacked regions Arch. Biochem. Biophys. 1982 216 247–254

    Article  CAS  PubMed  Google Scholar 

  33. W. S. Chow and J. Barber, Further studies of the relationship between cation-induced chlorophyll fluorescence and thylakoid membrane stacking changes Biochim. Biophys. Acta 1980 593 149–157

    Article  CAS  PubMed  Google Scholar 

  34. A. Telfer, The importance of membrane surface electrical charge on the regulation of photosynthetic electron transport by reversible protein phosphorylation in Progress in Photosynthesis Research, ed. J. Biggins, Martinus Nijhoff, Dordrecht, 1987, vol. II, pp. 689-696

    Google Scholar 

  35. Ben-Shem, F. Frolow and N. Nelson, Crystal structure of plant Photosystem I Nature 2003 426 630–635

    Article  CAS  PubMed  Google Scholar 

  36. N. Nelson, A. Ben-Shem The complex architecture of oxygenic photosynthesis Nat. Rev. 2004 5 1–12

    Article  Google Scholar 

  37. J. E. Mullet and C. J. Arntzen, Simulation of grana stacking in a model membrane system. Mediation by a purified light-harvesting pigment-protein complex from chloroplasts Biochim. Biophys. Acta 1980 589 100–117

    Article  CAS  PubMed  Google Scholar 

  38. J. F. Allen, Protein phosphorylation in regulation of photosynthesis Biochim. Biophys. Acta 1992 1098 275–335

    Article  CAS  PubMed  Google Scholar 

  39. H. Kirchhoff, M. Borinski, S. Lenhert, L. Chi, C. Büchel Transversal and lateral exciton energy transfer in grana thylakoids of spinach Biochemistry 2004 43 14508–14516

    Article  CAS  PubMed  Google Scholar 

  40. J. Standfuss, A. C. T. van Scheltinga, M. Lamborghini, W. Kühlbrandt Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution EMBO J. 2005 24 919–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. D. Stys, Stacking and separation of photosystem I and photosystem II in plant thylakoid membranes: A physico-chemical view Physiol. Plant. 1995 95 651–657

    Article  CAS  Google Scholar 

  42. B. R. Green, J. M. Anderson and W. W. Parson, Photosynthetic membranes and their light-harvesting antennas In Light-harvesting Antennas in Photosynthesis, ed. B. R. Green and W. W. Parsons, Kluwer Academic Publishers, Dordrecht/London/Boston, 2003, pp. 1-28

    Chapter  Google Scholar 

  43. B. E. S. Gunning and O. M. Schwartz, Confocal microscopy of thylakoid autofluorescence in relation to origin of grana and phylogeny in green algae Aust. J. Plant Physiol. 1999 26 695–708

    CAS  Google Scholar 

  44. J. D. Pickett-Heaps Ultrastructure and differentiation in Chara sp. I. Vegetative cells Aust. J. Biol. Sci. 1967 20 539–551

    Article  Google Scholar 

  45. N. K. Boardman, J. M. Anderson and D. J. Goodchild, Chlorophyll-protein complexes and structure of mature and developing chloroplasts Curr. Top. Bioenerg. 1978 8 36–109

    Google Scholar 

  46. P. Homann, Cation effects on the fluorescence of isolated chloroplasts Plant Physiol. 1969 44 932–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. N. Murata, Control of excitation transfer in photosynthesis I. Light-induced change of chlorophyll a fluorescence in Porphyridum cruentum Biochim. Biophys. Acta 1969 172 242–251

    Article  CAS  PubMed  Google Scholar 

  48. N. Murata, Control of excitation transfer in photosynthesis II. Magnesium ion dependent distribution of excitation energy between two pigment systems in spinach chloroplasts Biochim. Biophys. Acta 1969 189 171–181

    Article  CAS  PubMed  Google Scholar 

  49. N. Murata, Effects of monovalent cations on light energy distribution between two pigment systems of photosynthesis in isolated spinach chloroplasts Biochim. Biophys. Acta 1971 226 422–432

    Article  CAS  PubMed  Google Scholar 

  50. U. W. Goodenough and L. A. Stahelin, Structural differentiation of stacked and unstacked chloroplast membranes J. Cell Biol. 1971 48 594–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. C. J. Arntzen, Dynamic structural features of chloroplasts lamellae Curr. Top. Bioenerg. 1978 8 111–160

    CAS  Google Scholar 

  52. J. Barber, Energy transfer and its dependence on membrane properties in Chlorophyll Organisation and Energy Transfer in Photosynthesis, Ciba Foundation Symposium 61 (new series), Excerpta Medica, Amsterdam, 1979, pp. 283-304

    Google Scholar 

  53. J. Barber, An explanation for the relationship between salt-induced thylakoid stacking and the chlorophyll fluorescence changes associated with changes in spillover of energy from Photosystem II to Phototem I FEBS Lett. 1980 118 1–10

    Article  CAS  Google Scholar 

  54. B. T. Rubin, J. Barber, G. Paillotin, W. S. Chow and Y. Yamamoto, A diffusional analysis of the temperature sensitivity of the Mg2+-induced rise of chlorophyll fluorescence from pea thylakoid membranes Biochim. Biophys. Acta 1981 638 69–74

    Article  CAS  Google Scholar 

  55. F.-A. Wollmann and B. Diner, Cation control of fluorescence emission, light scatter, and membrane stacking in pigment mutants of Chlamydomonas reinhardtii Arch. Biochem. Biophys. 1980 201 646–658

    Article  Google Scholar 

  56. G. Garab, L. Mustárdy Role of LHCII-containing macrodomains in the structure, function and dynamics of grana Aust. J. Plant Physiol. 1999 26 649–658

    CAS  Google Scholar 

  57. Rojdestvenski, A. G. Ivanov, M. G. Cottam, A. Borodich, N. P. A. Huner, G. Öquist Segregation of photosystems in thylakoid membranes as a critical phenomenon Biophys. J. 2002 82 1719–1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. A. Borodich, I. Rojdestvenski, M. G. Cottam, J. M. Anderson, G. Öquist Segregation of the photosystems in higher plant thylakoids and short- and long-term regulation by a mesoscopic approach J. Theor. Biol. 2003 225 431–441

    Article  CAS  PubMed  Google Scholar 

  59. W. L. Butler, Energy distribution in the photochemical apparatus of photosynthesis Annu. Rev. Plant Physiol. 1978 29 345–378

    Article  CAS  Google Scholar 

  60. J. M. Anderson, Consequences of spatial separation of Photosystem 1 and 2 in thylakoid membranes of higher plant chloroplasts FEBS Lett. 1981 124 1–10

    Article  CAS  Google Scholar 

  61. J. M. Anderson, The significance of grana stacking in chlorophyll b-containing chloroplasts Photobiochem. Photobiophys. 1982 3 225–241

    CAS  Google Scholar 

  62. H.-W. Trissl and C. Wilhelm, Why do thylakoid membranes from higher plants form grana stacks? Trends Biochem. Sci. 1993 18 415–419

    Article  CAS  PubMed  Google Scholar 

  63. G. Garab, Z. Cseh, L. Kovács, S. Rajagopal, Z. Várkonyi, M. Wentworth, L. Mustárdy, A. Dér, A. V. Ruban, E. Papp, A. Holzenburg and P. Horton, Light-induced trimer to monomer transition in the main light-harvesting antenna complex of plants, Thermo-optic mechanism Biochemistry 2002 41 15121–15129

    Article  CAS  PubMed  Google Scholar 

  64. J. Andersson, A. V. Ruban, R. G. Walters, C. Howard, M. Wentworth, P. Horton and S. Jansson, Absence of Lhcb1 and Lhcb2 proteins of the light-harvesting complex of photosystem II-effects on photosynthesis, grana stacking and fitness Plant J. 2003 35 350–361

    Article  CAS  PubMed  Google Scholar 

  65. A. V. Ruban, M. Wentworth, A. E. Yakushevska, J. Andersson, P. J. Lee, W. Keegstra, J. P. Dekker, E. J. Boekema, S. Jansson and P. Horton, Plants lacking the main light-harvesting complex retain photosystem II macro-organization Nature 2003 421 648–652

    Article  CAS  PubMed  Google Scholar 

  66. Bonaventura and J. Myers, Fluorescence and oxygen evolution from Chlorella pyrenoidosa Biochim. Biophys. Acta 1969 189 366–383

    Article  CAS  PubMed  Google Scholar 

  67. P. Horton and M. T. Black, Activation of adenosine 5′-triphosphate-induced quenching of chlorophyll fluorescence by reduced plastoquinone FEBS Lett. 1980 119 141–144

    Article  CAS  Google Scholar 

  68. P. Horton and M. T. Black, Light-dependent quenching of chlorophyll fluorescence in pea chloroplasts induced by adenosine 5′-triphosphate Biochim. Biophys. Acta 1981 635 53–62

    Article  CAS  PubMed  Google Scholar 

  69. M. T. Black and P. Horton, An investigation into the mechanistic aspects of excitation redistribution following thylakoid membrane protein phosphorylation Biochim. Biophys. Acta 1984 767 568–573

    Article  CAS  Google Scholar 

  70. M. T. Black, P. Lee and P. Horton, Changes in the topography and function of thylakoid membranes following protein phosphorylation Planta 1986 168 330–336

    Article  CAS  PubMed  Google Scholar 

  71. Lunde, P. E. Jensen, A. Haldrup, J. Knoetzel, J. and H. V. Scheller, PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis Nature 2000 408 613–615

    Article  CAS  PubMed  Google Scholar 

  72. J. F. Allen and J. Forsberg, Molecular recognition in thylakoid structure and function Trends Plant Sci. 2001 6 317–326

    Article  CAS  PubMed  Google Scholar 

  73. A. A. Pascal, Z. Liu, K. Broess, B. van Oort, H. van Amerongen, C. Wang, P. Horton, B. Robert, W. Chang and A. Ruban, Molecular basis of photoprotection and control of photosynthetic light-harvesting Nature 2005 436 134–137

    Article  CAS  PubMed  Google Scholar 

  74. P. Horton, A. V. Ruban and R. G. Walters, Regulation of light harvesting in green plants Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996 47 655–684

    Article  CAS  PubMed  Google Scholar 

  75. P. Horton, A. V. Ruban and M. Wentworth, Allosteric regulation of the light harvesting system of photosystem II Philos. Trans. R. Soc. London, Ser. B 2000 355 1361–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. R. Bassi and S. Caffarri, Lhc proteins and the regulation of photosynthetic light harvesting function by xanthophylls Photosynth. Res. 2000 64 243–256

    Article  CAS  PubMed  Google Scholar 

  77. P. Horton, M. Wentworth and A. V. Ruban, Control of the light harvesting function of chloroplast membranes: the LHCII-aggregation model for non-photochemical quenching FEBS Lett. 2005 579 4201–4206

    Article  CAS  PubMed  Google Scholar 

  78. P. Horton, Are grana necessary for regulation of light harvesting? Aust. J. Plant Physiol. 1999 26 659–669

    CAS  Google Scholar 

  79. P. Horton and A. V. Ruban, Molecular design of the photosystem II light harvesting antenna: photosynthesis and photoprotection J. Exp. Bot. 2005 22 1–9

    Google Scholar 

  80. D. M. Kramer, T. J. Avenson and G. E. Edwards, Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions Trends Plant Sci. 2004 9 349–357

    Article  CAS  PubMed  Google Scholar 

  81. J. M. Anderson, E.-M. Aro Grana stacking and the protection of photosystem II membranes of higher plant leaves under sustained high irradiance: an hypothesis Photosynth. Res. 1994 41 315–326

    Article  CAS  PubMed  Google Scholar 

  82. H.-Y. Lee, Y.-N. Hong and W. S. Chow, Photoinactivation of Photosystem II complexes and photoprotection by non-functional neighbours in Capsicum annuum L. leaves Planta 2001 212 332–342

    Article  CAS  PubMed  Google Scholar 

  83. W. S. Chow and E.-M. Aro, Photoinactivation and mechanisms of recovery in Photosystem II: The Water/Plastoquinone Oxido-Reductase in Photosynthesis, ed. T. Wydrzynski and K. Satoh, 2005, Springer, The Netherlands, in press

    Google Scholar 

  84. E.-M. Aro, I. Virgin and B. Andersson, Photoinhibition of Photosystem II. Inactivation, protein damage and turnover Biochim. Biophys. Acta 1993 1143 113–134

    Article  CAS  PubMed  Google Scholar 

  85. E.-M. Aro, M. Suorsa, A. Rokka, Y. Allahverdiyeva, V. Paakkarinen, A. Saleem, N. Battchikova, E. Rintamäki Dynamics of Photosystem II-a proteomic approach to thylakoid protein complexes J. Exp. Bot. 2005 56 347–356

    Article  CAS  PubMed  Google Scholar 

  86. Baena-Gonzalez, R. Barbato, E.-M. Aro Role of PSII phosphorylation in the PSII repair cycle and oligomeric structure Planta 1999 208 196–204

    Article  CAS  Google Scholar 

  87. Rintamäki, R. Kettunen, E.-M. Aro Differential D1 dephosphorylation in functional and photodamaged Photosystem II centers. Dephosphorylation is a prerequisite for degradation of the damaged D1* J. Biol. Chem. 1996 271 14870–14875

    Article  PubMed  Google Scholar 

  88. W. S. Chow, The extent to which the spatial separation between photosystems I and II associated with granal formation limits noncyclic electron flow in isolated lettuce chloroplasts Arch. Biochem. Biophys. 1984 232 162–171

    Article  CAS  PubMed  Google Scholar 

  89. W. S. Chow, Electron transport, photophosphorylation and thylakoid stacking In Advances in Photosynthesis Research, ed. C. Sybesma, Dr. W. Junk Publishers, The Hague, 1984, vol III, pp. 83-86

    Google Scholar 

  90. E. C. Davies, W. S. Chow and B. R. Jordan, A study of factors which regulate the membrane appression of lettuce thylakoids in relation to irradiance Photosynth. Res. 1986 9 359–370

    Article  CAS  PubMed  Google Scholar 

  91. P. Scherrer, U. Alexiev, T. Marti, H. G. Khorana and M. P. Heyn, Covalently bound pH-indicator dyes at selected extracellular or cytoplasmic sites in bacteriorhodopsin micelles and its delayed transfer from surface to bulk Biochemistry 1994 33 13684–13692

    Article  CAS  PubMed  Google Scholar 

  92. J. M. Anderson, The grana margins of plant thylakoid membranes Physiol. Plant. 1989 76 243–248

    Article  CAS  Google Scholar 

  93. P. Joliot and A. Joliot, Cyclic electron transfer in plant leaf Proc. Natl. Acad. Sci USA 2002 99 10209–10214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. P. Joliot and A. Joliot, Quantification of cyclic and linear flows in plants Proc. Natl. Acad. Sci USA 2005 102 4913–4918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Öquist and N. P. A. Huner, Photosynthesis of overwintering evergreen plants Annu. Rev. Plant Biol. 2003 54 329–355

    Article  PubMed  CAS  Google Scholar 

  96. A. P. Minton, The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media J. Biol. Chem. 2001 276 10577–10580

    Article  CAS  PubMed  Google Scholar 

  97. C. P. Osborne, D. J. Beerling, B. H. Lomax and W. G. Chaloner, Biophysical constraints on the origin of leaves inferred from the fossil record Proc. Natl. Acad. Sci USA 2004 101 10306–10362

    Google Scholar 

  98. K. R. Miller and M. K. Lyon, Do we really know why chloroplast membranes stack? Trends Biochem. Sci. 1985 10 219–222

    Article  CAS  Google Scholar 

  99. K. R. Miller, A chloroplast membrane lacking photosystem I. Changes in unstacked membrane regions Biochim. Biophys. Acta 1980 592 143–152

    Article  CAS  PubMed  Google Scholar 

  100. K. R. Miller, The photosynthetic membrane Sci. Am. 1979 241 100–111

    Article  Google Scholar 

  101. D. J. Simpson, Freeze-fracture studies on barley plastid membranes V. viridis-n34, a photosystem I mutant Carlsberg Res. Commun. 1982 47 215–225

    Article  Google Scholar 

  102. A. Haldrup, D. J. Simpson and H. V. Scheller, Down-regulation of the PSI-F subunit of Photosystem I (PSI) in Arabidopsis thaliana. The PSI-F subunit is essential for photoautotrophic growth and contributes to antenna function J. Biol. Chem. 2002 275 31211–31218

    Article  Google Scholar 

  103. P.-O. Arvidsson and C. Sundby, A model for the topology of the chloroplast thylakoid membranes Aust. J. Plant Physiol. 1999 26 687–694

    CAS  Google Scholar 

  104. J. T. O. Kirk, The nature of plastids in The Plastids, J. T. O. Kirk and R. A. E. Tilney-Bassett, W. H. Freeman and Company, London, 1967, pp. 1-91

    Google Scholar 

  105. L. Stryer, Photosynthesis in Biochemistry, L. Stryer, W. H. Freeman and Company, New York, 3rd edn, 1988, p. 517

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wah Soon Chow.

Additional information

Dedicated to Professor James Barber on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chow, W.S., Kim, EH., Horton, P. et al. Granal stacking of thylakoid membranes in higher plant chloroplasts: the physicochemical forces at work and the functional consequences that ensue. Photochem Photobiol Sci 4, 1081–1090 (2005). https://doi.org/10.1039/b507310n

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b507310n

Navigation