Skip to main content
Log in

Photocyclization of 2-vinyldiphenylacetylenes and behavior of the isonaphthalene intermediates

  • Full Pape
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The conformation, electronic structure, spectroscopy, and unimolecular photoisomerization of 2-vinyldiphenylacetylene and two derivatives have been investigated. 2-Vinyldiphenylacetylene exists predominantly in a planar anti conformation. Introduction of an α-methyl substituent results in increased phenyl–vinyl dihedral angles for both syn and anti conformers, whereas a cyclic analog is constrained to a syn conformation with a large phenyl–vinyl dihedral angle. All three molecules undergo photocyclization to yield unstable cyclic allene (isonaphthalene) intermediates which undergo further reactions leading to stable products. Both the photocyclization process and behavior of the allene intermediate are dependent upon ground state conformation. The photophysical behavior of the 2-vinyl derivative, namely its short singlet lifetime and low fluorescence quantum yield, is similar to that of diphenylacetylene. It also has a low quantum yield for photocyclization. The 2-isopropenyl derivative and conformationally locked cyclic analog have relatively long singlet lifetimes and large quantum yields for fluorescence and cyclization. The difference in excited state behavior of the planar 2-vinylacetylene and its non-planar analogs is attributed to the effect of the phenyl–vinyl dihedral angle on the barriers for activated decay of the linear singlet state. However, the behavior of the 2-isopropenyl derivative does not appear to be dependent upon ground state conformation (syn vs. anti). The cyclic allene intermediates undergo sequential protonation–deprotonation in methanol solution to yield stable products. The 2-vinyl derivative yields only the fully aromatized 2-phenylnaphthalene. However, the 2-isopropenyl and cyclic derivatives yield mixtures of fully and partially aromatized products. Preferential formation of the partially aromatized products is attributed to a stereoelectronic effect on the deprotonation step. In diethyl ether solution only the fully aromatized product is formed via a free radical mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refences

  1. Y. Hirata Photophysical and photochemical primary processes of diphenylacetylene derivatives and related compounds in liquid phase Bull. Chem. Soc. Jpn. 1999 72 1647–1664.

    Article  CAS  Google Scholar 

  2. Y. Hirata, T. Okada, N. Mataga, T. Nomoto Picosecond time-resolved absorption spectrum measurements of the higher excited singlet state of diphenylacetylene in the solution phase J. Phys. Chem. 1992 96 6559–6563.

    Article  CAS  Google Scholar 

  3. C. Ferrante, U. Kensy, B. Dick Does diphenylacetylene (tolan) fluoresce from its second excited singlet state? Semiempirical MO calculations and fluorescence quantum yield measurements J. Phys. Chem. 1993 97 13457–13463.

    Article  CAS  Google Scholar 

  4. D. R. Borst, S. G. Chou, D. W. Pratt Identification of the light-absorbing states in tolane with potential relevance to self-similar phenylacetylene dendrimers Chem. Phys. Lett. 2001 343 289–295.

    Article  CAS  Google Scholar 

  5. M. Z. Zgierski, E. C. Lim Nature of the ‘dark’ state in diphenylacetylene and related molecules: state switch from the linear p,p* state to the bent s,p* state Chem. Phys. Lett. 2004 387 352–355.

    Article  CAS  Google Scholar 

  6. Y. Amatatsu, M. Hosokawa Theoretical study on the photochemical behavior of diphenylacetylene in the low-lying excited states J. Phys. Chem. A 2004 108 10238–10244.

    Article  CAS  Google Scholar 

  7. For more detailed descriptions of the DPA singlet state, see ref. 5 and 6.

  8. J. Saltiel and Y.-P. Sun, in Photochromism, Molecules and Systems, ed. H. Durr and H. Boaus-Laurent, Elsevier, Amsterdam, 1990.

  9. H. E. Zimmerman, L. Craft Photochemical reaction of benzoquinone with tolan Tetrahedron Lett. 1964 2131–2136.

    Google Scholar 

  10. H. M. Rosenberg, M. P. Serve Photocycloaddition of diphenylacetylene to 2,3-dihydropyran J. Org. Chem. 1968 33 1653–1654.

    Article  CAS  Google Scholar 

  11. S. P. Pappas, N. A. Portnoy Substituent effects on the photoaddition of diphenylacetylene to 1,4-naphthoquinones J. Org. Chem. 1968 33 2200–2203.

    Article  CAS  Google Scholar 

  12. A. R. Kim, Y. J. Mah, S. S. Kim Formation of o-/p-quinomethanes and p-quinodimethanes from the photoaddition of diphenylacetylene to o-quinones Bull. Korean Chem. Soc. 1998 19 1295–1297.

    CAS  Google Scholar 

  13. G. Kaupp, M. Stark Selectivities in the photolysis of diphenylcyclobutenes Chem. Ber. 1978 111 3608–3623.

    Article  CAS  Google Scholar 

  14. T. A. Zeidan, S. V. Kovalenko, M. Manoharan, R. J. Clark, I. Ghiviriga, I. V. Alabugin Triplet acetylenes as synthetic equivalents of 1,2-bicarbenes: Phantom n,p* state controls reactivity in triplet photocycloaddition J. Am. Chem. Soc. 2005 127 4270–4285.

    Article  CAS  PubMed  Google Scholar 

  15. P. M. op den Brouw, W. H. Laarhoven Photochemistry of 2-vinyldiphenylacetylene and related compounds J. Chem. Soc., Perkin Trans. 2 1982 795–799.

    Google Scholar 

  16. R. P. Johnson Strained cyclic cumulenes Chem. Rev. 1989 89 1111–1124.

    Article  CAS  Google Scholar 

  17. D. Rodríguez, A. Navarro-Vazquez, L. Castedo, D. Dominguez, C. Saá Cyclic allene intermediates in intramolecular dehydro Diels–Alder reactions: Labeling and theoretical cycloaromatization studies J. Org. Chem. 2003 68 1938–1946.

    Article  PubMed  CAS  Google Scholar 

  18. F. D. Lewis, X. Zuo, R. S. Kalgutkar, J. M. Wagner-Brennan, M. A. Miranda, E. Font-Sanchis, J. Perez-Prieto Temperature-dependent photochemistry of 1,3-diphenylpropenes. The di-p-methane reaction revisited J. Am. Chem. Soc. 2001 123 11883–11889.

    Article  CAS  PubMed  Google Scholar 

  19. F. D. Lewis, X. Zuo, V. Gevorgyan, M. Rubin Symmetry-enforced control of photochemical reactivity in 2-vinyl-1,3-terphenyl J. Am. Chem. Soc. 2002 124 13664–13665.

    Article  CAS  PubMed  Google Scholar 

  20. F. D. Lewis, X. Zuo Conformer-specific photoisomerization of some 2-vinylbiphenyls Photochem. Photobiol. Sci. 2003 2 1059–1066.

    Article  CAS  PubMed  Google Scholar 

  21. D. Yue, N. C. Della, R. C. Larock Efficient syntheses of heterocycles and carbocycles by electrophilic cyclization of acetylenic aldehydes and ketones Org. Lett. 2004 6 1581–1584.

    Article  CAS  PubMed  Google Scholar 

  22. A. C. Greiner, C. Spyckerelle, P. Albrecht Aromatic hydrocarbons from geological source-I Tetrahedron 1976 32 257–260.

    Article  CAS  Google Scholar 

  23. CAChe Release 6.1, Fujitsu Limited, Miahama-Ku, Chiba City, Chiba, Japan.

  24. F. D. Lewis, X. Zuo Activated decay pathways for planar vs. twisted singlet phenylalkenes J. Am. Chem. Soc. 2003 125 8806–8813.

    Article  CAS  PubMed  Google Scholar 

  25. J. A. Saltiel, A. Marinari, D. W. L. Chang, J. C. Mitchener, E. D. Megarity Transcis photoisomerization of the stilbenes and a reexamination of the positional dependence of the heavy-atom effect J. Am. Chem. Soc. 1979 101 2982–2996.

    Article  CAS  Google Scholar 

  26. M. C. Zerner, G. H. Loew, R. F. Kirchner, U. T. Mueller-Westerhoff An intermediate neglect of differential overlap technique for spectroscopy of transition-metal complexes. Ferrocene J. Am. Chem. Soc. 1980 102 589–599.

    Article  CAS  Google Scholar 

  27. I. V. Alabugin, M. Manoharan, B. Breiner, F. D. Lewis Control of kinetics and thermodynamics of [1,5]-shifts by aromaticity: a view through the prism of Marcus theory J. Am. Chem. Soc. 2003 125 9329–9342.

    Article  CAS  PubMed  Google Scholar 

  28. M. Prall, A. Krüger, P. R. Schreiner, H. Hopf The cyclization of parent and cyclic hexa-1,3-dien-5-ynes—a combined theoretical and experimental study Chem. Eur. J. 2001 7 4386–4394.

    Article  CAS  PubMed  Google Scholar 

  29. J. E. Bartmess, S. S. Griffith Tautomerization energetics of benzoannelated toluenes J. Am. Chem. Soc. 1990 112 2931–2936.

    Article  CAS  Google Scholar 

  30. L. T. Scott, W. R. Brunsvold Double-bond isomers of aromatic compounds. 1-Methylene-1,2-dihydronaphthalene J. Org. Chem. 1979 44 641.

    Article  CAS  Google Scholar 

  31. W. H. Saunders, Jr. and A. F. Cockerill, Mechanisms of Elimination Reactions, Wiley-Interscience, New York, 1973.

    Google Scholar 

  32. A. Rauk, T. S. Sorensen, C. Maerker, J. W. d. M. Carneiro, S. Sieber, P. v. R. Schleyer Axial and equatorial 1-methyl-1-cyclohexyl cation isomers both have chair conformations but differ in C–C and C–H hyperconjugation modes J. Am. Chem. Soc. 1996 118 3761–3762.

    Article  CAS  Google Scholar 

  33. I. V. Alabugin, M. Manoharan Effect of double-hyperconjugation on the apparent donor ability of s-bonds: Insights from the relative stability of d-substituted cyclohexyl cations J. Org. Chem. 2004 69 9011–9024.

    Article  CAS  PubMed  Google Scholar 

  34. D. Mangion, J. Kendall, D. R. Arnold Photosensitized (electron-transfer) deconjugation of 1-arylcyclohexenes Org. Lett. 2001 3 45–48.

    Article  CAS  PubMed  Google Scholar 

  35. R. M. Duhaime, D. A. Lombardo, I. A. Skinner, A. C. Weedon Conversion of a,ß-unsaturated esters to their ß,?-unsaturated isomers by photochemical deconjugation J. Org. Chem. 1985 50 873–879.

    Article  CAS  Google Scholar 

  36. J. Hofmann, K. Schulz, A. Altmann, M. Findeisen, G. Zimmermann Addition and cyclization reactions in the thermal conversion of hydrocarbons with an enyne structure. Part 5. High-temperature ring-closures of 1,3-hexadien-5-ynes to naphthalenes. Competing reactions via isoaromatics, alkenylidene carbenes, and vinyl-type radicals Liebigs Ann./Rec. 1997 2541–2548.

    Google Scholar 

  37. Y. Hirata, T. Okada, T. Namoto Higher excited singlet states of diphenylacetylene in solution phase Chem. Phys. Lett. 1993 209 397–402.

    Article  CAS  Google Scholar 

  38. F. D. Lewis, X. Zuo Torsional barriers for planar versus twisted singlet styrenes J. Am. Chem. Soc. 2003 125 2046–2047.

    Article  CAS  PubMed  Google Scholar 

  39. H. J. C. Jacobs, E. Havinga The NEER princlple Adv. Photochem. 1979 11 305–376.

    CAS  Google Scholar 

  40. U. Mazzucato, F. Momicchioli Rotational isomerism in trans-1,2-diarylethylenes Chem. Rev. 1991 91 1679–1719.

    Article  CAS  Google Scholar 

  41. J. Saltiel, N. Tarkalanov, D. F. J. Sears Conformer-specific adiabatic cistrans photoisomerization of cis-1-(2-naphthyl)-2-phenylethene. A striking example of the NEER principle J. Am. Chem. Soc. 1995 117 5586–5587.

    Article  CAS  Google Scholar 

  42. I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules, Academic Press, New York, 1971.

    Google Scholar 

  43. D. R. James, A. Siemiarczuk, W. R. Ware Stroboscopic optical boxcar technique for the determination of fluorescence lifetimes Rev. Sci. Instrum. 1992 63 1710–1716.

    Article  CAS  Google Scholar 

  44. A. R. Katritzky, G. Zhang, L. Xie Benzotriazole-assisted aromatic ring annulation: Efficient and general syntheses of polysubstituted naphthalenes and phenanthrenes J. Org. Chem. 1997 62 721–725.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick D. Lewis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sajimon, M.C., Lewis, F.D. Photocyclization of 2-vinyldiphenylacetylenes and behavior of the isonaphthalene intermediates. Photochem Photobiol Sci 4, 629–636 (2005). https://doi.org/10.1039/b504997k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b504997k

Navigation