Skip to main content
Log in

Photosensitization of DNA by dipicolinic acid, a major component of spores of Bacillus species

  • Full Pape
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The DNA in spores of Bacillus species exhibits a relatively novel photochemistry, as 5-thyminyl-5,6-dihydrothymine (spore photoproduct (SP)) is by far the major UV photoproduct whereas cyclobutane dimers (CPDs) and (6-4) photoproducts (6-4PPs) are the major photoproducts in growing cells. Dehydration and more importantly complexation of DNA by a/b-type small, acid-soluble spore proteins (SASP) have been shown to partly explain the photochemistry of spore DNA. The large amount (~10% of dry weight) of the spore’s dipicolinic acid (DPA) also has been shown to play a role in spore DNA photochemistry. In the present work we showed by exposing spores of various strains of B. subtilis to UVC radiation that DPA photosensitizes spore DNA to damage and favors the formation of SP. The same result was obtained in either the presence or absence of the a/b-type SASP that saturate the spore chromosome. Addition of DPA to dry films of isolated DNA or to frozen solutions of thymidine also led to a higher yield of SP and increased ratio of CPDs to 6-4PPs; DPA also significantly increased the yield of CPDs in thymidine exposed to UVC in liquid solution. These observations strongly support a triplet energy transfer between excited DPA and thymine residues. We further conclude that the combined effects of a/b-type SASP and DPA explain the novel photochemistry of DNA in spores of Bacillus species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refences

  1. W. L. Nicholson, N. Munakata, G. Horneck, H. J. Melosh, P. Setlow Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments Microbiol. Mol. Biol. Rev. 2000 64 548–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. P. Setlow Mechanisms which contribute to the long-term survival of spores of Bacillus species J. Appl. Bacteriol. 1994 76 129S-134S

  3. P. Setlow, Resistance of bacterial spores, in Bacterial Stress Responses, ed. G. Storz and R. Hengge-Aronis, American Society for Microbiology, Washington, DC, 1994, pp. 217–230

    Google Scholar 

  4. W. L. Nicholson, A. C. Schuerger, P. Setlow The solar UV environment and bacterial spore UV resistance: considerations for panspermia and planetary protection Mutat. Res. 2005 571 249–264

    Article  CAS  PubMed  Google Scholar 

  5. P. Setlow Resistance of spores of Bacillus species to ultraviolet light Environ. Mol. Mutagen. 2001 38 97–104

    Article  CAS  PubMed  Google Scholar 

  6. J. E. Donnellan, Jr., R. B. Setlow Thymine photoproducts but not thymine dimers are found in ultraviolet-irradiated bacterial spores Science 1965 149 308–310

    Article  CAS  PubMed  Google Scholar 

  7. J. E. Donnellan, Jr., R. S. Stafford The ultraviolet photochemistry and photobiology of vegetative cells and spores of Bacillus megaterium Biophys. J. 1968 8 17–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. A. J. Varghese 5-Thyminyl-5,6-dihydrothymine from DNA irradiated with ultraviolet light Biochem. Biophys. Res. Commun. 1970 38 484–490

    Article  CAS  PubMed  Google Scholar 

  9. N. Munakata, C. S. Rupert Genetically controlled removal of “spore photoproduct” from deoxyribonucleic acid of ultraviolet-irradiated Bacillus subtilis spores J. Bacteriol. 1972 111 192–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. T. S. Van Wang, C. S. Rupert Evidence for the monomerization of spore photoproduct to two thymines by the light independent “spore repair” process in Bacillus subtilis Photochem. Photobiol. 1977 25 123–127

    Article  CAS  PubMed  Google Scholar 

  11. P. Gerhardt and R. E. Marquis, Spore thermoresistance mechanisms, in Regulation of Prokaryotic Development, ed. I. Smith, R. A. Slepecky and P. Setlow, American Society for Microbiology, Washington, DC, 1989, pp. 43–64

    Google Scholar 

  12. M. H. Patrick, D. M. Gray Independence of photoproduct formation on DNA conformation Photochem. Photobiol. 1976 24 507–513

    Article  CAS  PubMed  Google Scholar 

  13. R. O. Rahn, J. L. Hosszu Influence of relative humidity on the photochemistry of DNA films Biochim. Biophys. Acta 1969 190 126–131

    Article  CAS  PubMed  Google Scholar 

  14. A. Driks and P. Setlow, Morphogenesis and properties of the bacterial spore, in Prokaryotic Development, ed. Y. V. Brun and L. J. Shimkets, American Society for Microbiology, Washington, DC, 1999, pp. 191–218

    Google Scholar 

  15. P. Setlow Mechanisms for the prevention of damage to the DNA in spores of Bacillus species Annu. Rev. Microbiol. 1995 49 29–54

    Article  CAS  PubMed  Google Scholar 

  16. B. Setlow, P. Setlow Thymine containing dimers as well as spore photoproducts are found in ultraviolet-irradiated Bacillus subtilis spores that lack small acid-soluble proteins Proc. Natl. Acad. Sci. USA 1987 84 421–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. H. Fairhead, P. Setlow Binding of DNA to a/ß-type small, acid-soluble proteins from spores of Bacillus or Clostridium species prevents formation of cytosine dimers, cytosine-thymine dimers and bipyrimidine photoadducts upon ultraviolet irradiation J. Bacteriol. 1992 174 2874–2880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. W. L. Nicholson, B. Setlow, P. Setlow Ultraviolet irradiation of DNA complexed with a/ß-type small, acid-soluble proteins from spores of Bacillus or Clostridium species makes spore photoproduct but not thymine dimers Proc. Natl. Acad. Sci. USA 1991 88 8288–8292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. W. L. Nicholson, B. Setlow, P. Setlow UV photochemistry of DNA in vitro and in Bacillus subtilis spores at earth-ambient and low atmospheric pressure: implications for spore survival on other planets or moons in the solar system Astrobiology 2003 2 417–425

    Article  CAS  Google Scholar 

  20. T. Douki, B. Setlow, P. Setlow Effects of the binding of a/ß-type small, acid-soluble spore proteins on the photochemistry of DNA in spores of Bacillus subtilis and in vitro Photochem. Photobiol. 2005 81 163–169

    Article  CAS  PubMed  Google Scholar 

  21. B. Setlow, P. Setlow Dipicolinic acid greatly enhances the production of spore photoproduct in bacterial spores upon ultraviolet irradiation Appl. Environ. Microbiol. 1993 59 640–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. G. R. Germaine, W. G. Murrell Effect of dipicolinic acid on the ultraviolet radiation resistance of Bacillus cereus spores Photochem. Photobiol. 1973 17 145–154

    Article  CAS  PubMed  Google Scholar 

  23. R. A. Daniel, J. Errington Cloning, nucleotide sequence, functional analysis and transcriptional regulation of the genes encoding DPA synthetase required for sporulation in Bacillus subtilis J. Mol. Biol. 1993 232 468-283

    Article  CAS  PubMed  Google Scholar 

  24. J. Errington Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis Microbiol. Rev. 1993 57 1–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. T. A. Slieman, W. L. Nicholson Role of dipicolinic acid in survival of Bacillus subtilis spores exposed to artificial and solar UV radiation Appl. Environ. Microbiol. 2001 67 1274–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. J.-L. Sanchez-Salas, M. L. Santiago-Lara, B. Setlow, M. D. Sussman, P. Setlow Properties of Bacillus megaterium and Bacillus subtilis mutants which lack the protease that degrades small, acid-soluble proteins during spore germination J. Bacteriol. 1992 174 807–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. J. A. Lindsay, W. G. Murrell Changes in density of DNA after interaction with dipicolinic acid and its possible role in spore heat resistance Curr. Microbiol. 1985 12 329–334

    Article  CAS  Google Scholar 

  28. J. A. Lindsay, W. G. Murrell Solution spectroscopy of dipicolinic acid interaction with nucleic acids: role in spore heat resistance Curr. Microbiol. 1986 13 255–259

    Article  CAS  Google Scholar 

  29. M. Paidhungat, K. Ragkousi, P. Setlow Genetic requirements for induction of germination of spores of Bacillus subtilis by Ca2+-dipicolinate J. Bacteriol. 2001 183 4886–4893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J. A. Lindsay, W. G. Murrell A comparison of UV-induced DNA photoproducts from isolated and non-isolated developing forespores Biochem. Biophys. Res. Commun. 1983 113 618–625

    Article  CAS  PubMed  Google Scholar 

  31. J. M. Mason, P. Setlow Evidence for an essential role for small, acid-soluble spore proteins in the resistance of Bacillus subtilis spores to ultraviolet light J. Bacteriol. 1986 167 174–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. W. L. Nicholson and P. Setlow, Sporulation, germination and outgrowth, in Molecular Biological Methods for Bacillus, ed. C. R. Harwood and S. M. Cutting, John Wiley and Sons, Chichester, UK, 1990, pp. 391–450

    Google Scholar 

  33. M. Paidhungat, B. Setlow, A. Driks, P. Setlow Characterization of spores of Bacillus subtilis which lack dipicolinic acid J. Bacteriol. 2000 182 5505–5512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. T. Douki, J. Cadet Individual determination of the yield of the main-UV induced dimeric pyrimidine photoproducts in DNA suggests a high mutagenicity of CC photolesions Biochemistry 2001 40 2495–2501

    Article  CAS  PubMed  Google Scholar 

  35. T. Douki, J. Cadet Formation of the spore photoproduct and other dimeric lesions between adjacent pyrimidines in UVC-irradiated dry DNA Photochem. Photobiol. Sci. 2003 2 433–436

    Article  CAS  PubMed  Google Scholar 

  36. T. Douki, G. Laporte, J. Cadet Inter-strand photoproducts are produced in high yield within A-DNA exposed to UVC radiation Nucleic Acids Res. 2003 31 3134–3142.40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. R. O. Rahn, J. L. Hosszu Photochemical studies of thymine on ice Photochem. Photobiol. 1969 10 131–137

    Article  CAS  PubMed  Google Scholar 

  38. A. J. Varghese Photochemistry of thymidine on ice Biochemistry 1970 9 4781–4787

    Article  CAS  PubMed  Google Scholar 

  39. J. Griffith, A. Mahkov, L. Santiago-Lara, P. Setlow Electron microscropic studies of the interaction between a Bacillus α/β-type small, acid-soluble spore protein with DNA: protein binding is cooperative, stiffens the DNA and induces negative supercoiling Proc. Natl. Acad. Sci. USA 1994 91 8224–8228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Frenkel-Krispin, D. J. Englander, E. Shimoni, M. Eisenstein, E. Bullitt, R. Horowitz-Scherer, C. S. Hayes, P. Setlow, A. Minsky, S. G. Wolf Structure of DNA–SspC complex: implications for DNA packaging, protection and repair in bacterial spores J. Bacteriol. 2004 186 3525–3530

    Article  CAS  Google Scholar 

  41. E. Melly, P. C. Genest, M. E. Gilmore, S. Little, D. L. Popham, A. Driks, P. Setlow Analysis of the properties of spores of Bacillus subtilis prepared at different temperatures J. Appl. Microbiol. 2002 92 1105–1115

    Article  CAS  PubMed  Google Scholar 

  42. A. A. Lamola Triplet photosensitization and the photobiology of thymine dimers in DNA Pure Appl. Chem. 1970 24 599–610

    Article  CAS  PubMed  Google Scholar 

  43. M. Charlier, C. Hélène Photochemical reactions of aromatic ketones with nucleic acids and their components—III. Chain breakage and thymine dimerization in benzophenone photosensitized DNA Photochem. Photobiol. 1972 51 527–536

    Article  Google Scholar 

  44. T. Douki, A. Reynaud-Angelin, J. Cadet, E. Sage Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation Biochemistry 2003 42 9221–9226

    Article  CAS  PubMed  Google Scholar 

  45. A. Moysan, A. Viari, P. Vigny, L. Voituriez, J. Cadet, E. Moustacchi, E. Sage Formation of cyclobutane thymine dimers photosensitized by pyridopsoralens: quantitative and qualitative distribution within DNA Biochemistry 1991 23 7080–7088

    Article  Google Scholar 

  46. T. Douki, M. Court, J. Cadet Electrospray-mass spectrometry characterization and measurement of far-UV induced thymine photoproducts J. Photochem. Photobiol. B: Biol. 2000 54 145–154

    Article  CAS  Google Scholar 

  47. S. Courdavault, C. Baudouin, S. Sauvaigo, S. Mouret, S. Candéias, M. Charveron, A. Favier, J. Cadet, T. Douki Unrepaired cyclobutane pyrimidine dimers do not prevent proliferation of UVB-irradiated cultured human fibroblasts Photochem. Photobiol. 2004 79 145–151

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Douki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Douki, T., Setlow, B. & Setlow, P. Photosensitization of DNA by dipicolinic acid, a major component of spores of Bacillus species. Photochem Photobiol Sci 4, 591–597 (2005). https://doi.org/10.1039/b503771a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b503771a

Navigation