Skip to main content
Log in

Studies on curcumin and curcuminoids. XXIX. Photoinduced cytotoxicity of curcumin in selected aqueous preparations

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Natural curcumin was evaluated as a potential photosensitizer for oral applications. The photocytotoxicity of curcumin on salivary gland acinar cells (SM 10–12) was investigated in five aqueous preparations consisting of 5% DMSO, non-ionic micelles, cyclodextrin, liposomes, or a hydrophilic polymer. The difference in phototoxic effects between natural curcumin and synthetic curcumin was examined. Cytotoxicity in SM 10–12 cells exposed to curcumin in the concentration range 0.4–13.5 μM was investigated by MTT test, a fluorescence–staining microscopic test, and by Western immunoblotting techniques. The potential formation of a photoreaction product, hydrogen peroxide, was evaluated by a fluorescence assay. The light source was a halogen lamp used in the dental clinic, emitting mainly in the blue part of the spectrum. The phototoxic effect on SM 10–12 cells was dependent on curcumin concentration, the light dose and the type of preparation. Natural and synthetic curcumin induced phototoxicity to the same extent. Significant effects on the cells were obtained at low curcumin concentrations (≤0.5 μM) and at a low light dose (≤6 J cm−2), after 3 h incubation. Neither the activation of caspases-3, -7, -8 or -9, nor the formation of hydrogen peroxide could be detected in cells exposed to curcumin and light. The liposome preparation was the most efficient vehicle for curcumin to induce cell death. The phototoxic effect induced by curcumin is highly dependent on the type of preparation. Curcumin might be a potential photosensitizer in the treatment of oral lesions and cancers provided careful selection of the vehicle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Sibata, V. C. Colussi, N. L Oleinick, T. J. Kinsella, Photodynamic therapy: a new concept in medical treatment, Braz. J. Med. Biol. Res., 2000, 33, 869–880.

    Article  CAS  Google Scholar 

  2. G. Jori, Low-density lipoproteins-liposome delivery systems for tumor photosensitizers in vivo in photodynamic therapy, in −12Basic principles and clinical applications, ed. B. W. Henderson and T. J. Dougherty, Marcel Dekker, New York, 1992.

  3. G. Jori, Tumor photosensitizers: approaches to enhance the selectivity and efficiency of photodynamic therapy, J. Photochem. Photobiol., B, 1996, 36, 87–93.

    Article  CAS  Google Scholar 

  4. J. Miguel, A. Bernd, J. M. Sempere, J. Díaz-Alperi, A. Ramírez, The curcuma antioxidants: pharmacological effects and prospects for future clinical use, Arch. Gerontol. Geriat., 2002, 34, 37–46.

    Article  Google Scholar 

  5. D. Karunagaran, R. Rashmi, T. R. Kumar, Induction of apoptosis by curcumin and its implications for cancer therapy, Curr. Cancer Drug Targets, 2005, 5, 117–129.

    Article  CAS  Google Scholar 

  6. T. A. Dahl, P. Bilski, K. J. Reszka, C. F. Chignell, Photocytotoxicity of curcumin, Photochem. Photobiol., 1994, 59, 290–294.

    Article  CAS  Google Scholar 

  7. H. H. Tønnesen, J. Karlsen, Studies on curcumin and curcuminoids. V. Alkaline degradation of curcumin, Z. Lebensm.-Unters. -Forsch., 1985, 180, 132–134.

    Article  Google Scholar 

  8. H. H. Tønnesen, J. Karlsen, Studies on curcumin and curcuminoids. VI. Kinetics of curcumin degradation in aqueous solution, Z. Lebensm.-Unters. -Forsch., 1985, 180, 402–404.

    Article  Google Scholar 

  9. H. H. Tønnesen, M. Másson, T. Loftsson, Studies on curcumin and curcuminoids. XXVII: Cyclodextrin complexation: solubility, chemical and photochemical stability, Int. J. Pharm., 2002, 244, 127–135.

    Article  Google Scholar 

  10. H. H. Tønnesen, Solubility, chemical and photochemical stability of curcumin in surfactant solutions. Studies on curcumin and curcuminoids, XXVIII, Pharmazie, 2002, 57, 820–824.

    PubMed  Google Scholar 

  11. H. J. J. Pabon, A synthesis of curcumin and related compounds, Recl. Trav. Chim. Pays-Bas, 1964, 83, 379–386.

    Article  CAS  Google Scholar 

  12. D. Q. Quissell, K. A. Barzen, D. C. Gruenert, R. S. Redman, J. M. Camden, J. T. Turner, Development and characterization of SV40 immortalized rat submandibular acinar cell lines, In Vitro Cell Dev. Biol.-Animal, 1997, 33, 164–173.

    Article  CAS  Google Scholar 

  13. J. M. Edmondson, L. S. Armstrong, A. O. Martinez, A rapid and simple MTT-based spectrophotometric assay for determining drug sensitivity in monolayer cultures, J. Tissue Cult. Methods, 1988, 11, 15–17.

    Article  CAS  Google Scholar 

  14. Y. Lee, E. Shacter, Oxidative stress inhibits apoptosis in human lymphoma cell, J. Biol. Chem., 1999, 274, 19792–19798.

    Article  CAS  Google Scholar 

  15. H. Towbin, T. Staehelin, J. Gordon, Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications, Proc. Natl. Acad. Sci. USA, 1979, 76, 4350–4354.

    Article  CAS  Google Scholar 

  16. U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, 227, 680–685.

    Article  CAS  Google Scholar 

  17. H. H. Tønnesen, G. Smistad, T. Ågren, J. Karlsen, Studies on curcumin and curcuminoids, XXIII: Effects of curcumin on liposomal lipid peroxidation, Int. J. Pharm., 1993, 90, 221–228.

    Article  Google Scholar 

  18. E. Bruzell Roll, J. E. Dahl, G. Runningen, E. Morisbak, In vitro cell death induced by irradiation and chemicals relevant for dental applications; dose-response and potentiation effects, Eur. J. Oral Sci., 2004, 112, 273–279.

    Article  Google Scholar 

  19. D. Bernhard, W. Schwaiger, R. Crazzolara, I. Tinhofer, R. Kofler, A. Csordas, Enhanced MTT-reducing activity under growth inhibition by reservatrol in CEM-C7H2 lymphocytic leukemia cells, Cancer Lett., 2003, 195, 193–199.

    Article  CAS  Google Scholar 

  20. A. Bielak-Zmijewska, K. Piwocka, A. Magalska, E. Sikora, P-glycoprotein expression does not change the apoptotic pathway induced by curcumin in HL-60 cells, Cancer Chemother. Pharmacol., 2004, 53, 179–185.

    Article  CAS  Google Scholar 

  21. H. H. Tønnesen, to be published.

  22. K. M. Schaich, C. Fisher, R. King, Formation and reactivity of free radicals in curcuminoids. An electron paramagnetic resonance study, ACS Symp. Ser., 1994, 547, 204–221.

    Article  CAS  Google Scholar 

  23. A. A. Gorman, I. Hamblett, T. J. Hill, H. Jones, V. S. Srinivasan, P. D Wood, Curcumin: A pulse radiolysis investigation of the radical in micellar systems, ACS Symp. Ser., 1997, 660, 234–243.

    Article  CAS  Google Scholar 

  24. K. I. Priyadarsini, Free radical reactions of curcumin in membrane models, Free Rad. Biol. Med., 1997, 23, 838–843.

    Article  CAS  Google Scholar 

  25. G. Began, E. Sudharsan, K. U Sankar, A. G. A. Rao, Interaction of curcumin with phosphatidylcholine: A spectrofluorimetric study, J. Agric. Food Chem., 1999, 47, 4992–4997.

    Article  CAS  Google Scholar 

  26. P.-H. Bong, Spectral and photophysical behaviours of curcumin and curcuminoids, Bull. Korean Chem. Soc., 2000, 21, 81–86.

    CAS  Google Scholar 

  27. C. F. Chignell, P. Bilski, K. J. Reszka, A. G. Motton, R. H. Sik, T. A. Dahl, Spectral and photochemical properties of curcumin, Photochem. Photobiol., 1994, 59, 295–302.

    Article  CAS  Google Scholar 

  28. A. A. Gorman, I. Hamblett, V. S. Srinivasan, P. D Wood, Curcumin-derived transients: a pulsed laser and pulse radiolysis study, Photochem. Photobiol., 1994, 59, 389–398.

    Article  CAS  Google Scholar 

  29. S. M. Khopde, K. I. Priyadarsini, D. K. Palit, T. Mukherjee, Effect of solvent on the excited-state photophysical properties of curcumin, Photochem. Photobiol., 2000, 72, 625–631.

    Article  CAS  Google Scholar 

  30. F. Ortica, M. A. J. Rodgers, A laser flash photolysis study of curcumin in dioxane–water mixtures, Photochem. Photobiol., 2001, 74, 745–751.

    CAS  PubMed  Google Scholar 

  31. V. S. Srinivasan, Oxygen derivatives in electrochemical and photochemical studies, The Spectrum, 1991, 4, 15–16.

    Google Scholar 

  32. H. H. Tønnesen, J. V. Greenhill, Studies on curcumin and curcuminoids. XXII: Curcumin as a reducing agent and a radical scavenger, Int. J. Pharm., 1992, 87, 79–87.

    Article  Google Scholar 

  33. W. H. Chan, C. C. Wu, J. S. Yu, Curcumin inhibits UV irradiation-induced oxidative stress and apoptotic biochemical changes in human epidermoid carcinoma A431 cells, J. Cell Biochem., 2003, 90, 327–338.

    Article  CAS  Google Scholar 

  34. K. Piwocka, K. Zablocki, M. R. Wieckowski, J. Skierski, I. Feiga, J. Szopa, N. Drela, L. Wojtczak, E. Sikora, A novel apoptosis-like pathway, independent of mitochondria and caspases, induced by curcumin in human lymphoblastoid T (Jurkat) cells, Exp. Cell Res., 1999, 249, 299–307.

    Article  CAS  Google Scholar 

  35. S. Bhaumik, R. Anjum, N. Rangaraj, B. V. Pardhasaradhi, A. Khar, Curcumin mediated apoptosis in AK-5 tumor cells involves the production of reactive oxygen intermediates, FEBS Lett., 1999, 456, 311–314.

    Article  CAS  Google Scholar 

  36. A. Khar, A. M. Ali, B. V. Pardhasaradhi, Z. Begum, R. Anjum, Antitumor activity of curcumin is mediated through the induction of apoptosis in AK-5 tumor cells, FEBS Lett., 1999, 445, 165–168.

    Article  CAS  Google Scholar 

  37. A. C. Bharti, N. Donato, S. Singh, B. B. Aggarwal, Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-κB and IκBα kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis, Blood, 2003, 101, 1053–1062.

    Article  CAS  Google Scholar 

  38. L. Moragoda, R. Jaszewski, A. P. Majumdar, Curcumin induced modulation of cell cycle and apoptosis in gastric and colon cancer cells, Anticancer Res., 2001, 21, 873–878.

    CAS  PubMed  Google Scholar 

  39. K. Piwocka, A. Bielak-Mijewska, E. Sikora, Curcumin induces caspase-3-independent apoptosis in human multidrug-resistant cells, Ann. N. Y. Acad. Sci., 2002, 973, 250–254.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen M. Bruzell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruzell, E.M., Morisbak, E. & Tønnesen, H.H. Studies on curcumin and curcuminoids. XXIX. Photoinduced cytotoxicity of curcumin in selected aqueous preparations. Photochem Photobiol Sci 4, 523–530 (2005). https://doi.org/10.1039/b503397g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b503397g

Navigation