Skip to main content
Log in

The balance between charge transfer and non-charge transfer pathways in the sensitization of singlet oxygen by ππ* triplet states

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A charge transfer (CT) channel and a non-CT deactivation channel, both leading to formation of O2(1Σg+), O2(1Δg) and O2(3Σg), compete in the quenching of triplet states by O2. Recent studies by our group demonstrated that these channels are described by rather simple and general quantitative relations. In the present paper we use the detailed kinetic data on the quenching by O2 of ππ* triplet sensitizers of three homologous aromatic series in CCl4 to derive a parameter, which describes the balance between CT and non-CT deactivation. This quantity, pCT, is the relative contribution of CT mediated deactivation and is easily calculated for a sensitizer of known triplet energy from its quenching rate constant. The parameter pCT quantitatively describes the balance between both deactivation channels without requiring any knowledge of oxidation potentials. It is shown how the variation of pCT influences the efficiencies and the rate constants of O2(1Σg+), O2(1Δg) and O2(3Σg) formation in the quenching process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Schweitzer, R. Schmidt, Physical mechanisms of generation and deactivation of singlet oxygen, Chem. Rev., 2003, 103, 1685.

    Article  CAS  Google Scholar 

  2. R. Schmidt, M. Bodesheim, Efficiencies of O2(1Σg+) and O2(1Δg) formation in the primary steps of triplet state photosensitization in solution, Chem. Phys. Lett., 1993, 213, 111.

    Article  CAS  Google Scholar 

  3. R. Schmidt, M. Bodesheim, Radiationless deactivation of the second excited singlet state 1Σg+ of O2 in solution, J. Phys. Chem. A, 1998, 102, 4769.

    Article  CAS  Google Scholar 

  4. O. L. J. Gijzeman, F. Kaufman, G. Porter, Oxygen quenching of aromatic triplet states in solution, J. Chem. Soc., Faraday Trans. 2, 1973, 69, 708.

    Article  CAS  Google Scholar 

  5. A. Garner, F. Wilkinson, Quenching of the triplet states by molecular oxygen and the role of charge-transfer interactions, Chem. Phys. Lett., 1977, 45, 432.

    Article  CAS  Google Scholar 

  6. D. J. McGarvey, P. G. Szekeres, F. Wilkinson, The efficiency of singlet oxygen generation by substituted naphthalenes in benzene. Evidence for the participation of charge-transfer interactions, Chem. Phys. Lett., 1992, 199, 314.

    Article  CAS  Google Scholar 

  7. F. Wilkinson, D. J. McGarvey, A. F. Olea, Factors governing the efficiency of singlet oxygen production during oxygen quenching of singlet and triplet states of anthracene derivatives in cyclohexane solution, J. Am. Chem Soc., 1993, 115, 12144.

    Article  CAS  Google Scholar 

  8. F. Wilkinson, D. J. McGarvey, A. F. Olea, Excited triplet state interaction with molecular oxygen; Influence of charge transfer on the bimolecular quenching rate constants and the yields of singlet oxygen (O2*, 1?g) for substituted naphthalenes in various solvents, J. Phys. Chem., 1994, 98, 3762.

    Article  CAS  Google Scholar 

  9. A. F. Olea, F. Wilkinson, Singlet oxygen production from excited singlet and triplet states of anthracene derivatives in acetonitrile, J. Phys. Chem., 1995, 99, 4518.

    Article  CAS  Google Scholar 

  10. F. Wilkinson, A. A. Abdel-Shafi, Mechanism of quenching of triplet states by oxygen: Biphenyl derivatives in acetonitrile, J. Phys. Chem. A, 1997, 101, 5509.

    Article  CAS  Google Scholar 

  11. F. Wilkinson, A. A. Abdel-Shafi, Mechanism of quenching of triplet states by molecular oxygen: Biphenyl derivatives in different solvents, J. Phys. Chem. A, 1999, 103, 5425.

    Article  CAS  Google Scholar 

  12. A. A. Abdel-Shafi, F. Wilkinson, Charge transfer effects on the efficiency of singlet oxygen production following oxygen quenching of excited singlet and triplet states of aromatic hydrocarbons in acetonitrile, J. Phys. Chem. A, 2000, 104, 5747.

    Article  CAS  Google Scholar 

  13. A. A. Abdel-Shafi, D. R. Worrall, F. Wilkinson, Singlet oxygen formation efficiencies following quenching of excited singlet and triplet states of aromatic hydrocarbons by molecular oxygen, J. Photochem., Photobiol. A: Chem., 2001, 142, 133.

    Article  CAS  Google Scholar 

  14. A. A. Abdel-Shafi, F. Wilkinson, Electronic to vibrational energy conversion and charge transfer contributions during quenching by molecular oxygen of electronically excited triplet states, Phys. Chem. Chem. Phys., 2002, 4, 248.

    Article  CAS  Google Scholar 

  15. F. A. Cebul, K. A. Kirk, D. W. Lupo, L. M. Pittenger, M. D. Schuh, I. F. Williams, G. C. Winston, Charge-transfer mechanism for quenching of the lowest 3n,p* State of vapor-phase carbonyl-containing compounds by O2, J. Am. Chem. Soc., 1980, 102, 5656.

    Article  CAS  Google Scholar 

  16. G. Smith, Enhanced intersystem crossing in the oxygen quenching of aromatic hydrocarbon triplet states with high energies, J. Chem. Soc., Faraday Trans. 2, 1982, 78, 769.

    Article  CAS  Google Scholar 

  17. C. Grewer, H.-D. Brauer, Temperature dependence of the oxygen quenching of pp*-singlet and pp*-triplet states of singlet oxygen sensitizers, J. Phys. Chem., 1993, 97, 5001.

    Article  CAS  Google Scholar 

  18. C. Grewer, H.-D. Brauer, Mechanism of the triplet state quenching by molecular oxygen in solution, J. Phys. Chem., 1994, 98, 4230.

    Article  CAS  Google Scholar 

  19. A. P. Darmanyan, W. Lee, W. S. Jenks, Charge transfer interactions in the generation of singlet oxygen O2(1?g) by strong electron donors, J. Phys. Chem. A, 1999, 103, 2705.

    Article  CAS  Google Scholar 

  20. R. Shafii, R. Schmidt, Determination of rate constants of formation of O2(1Σg+), O2(1?g) and O2(3Σg) in the quenching of triplet states by O2 for compounds with incomplete intersystem crossing, J. Phys. Chem. A, 2001, 105, 1805.

    Article  CAS  Google Scholar 

  21. M. Bodesheim, M. Schütz, R. Schmidt, Triplet state energy dependence of the competitive formation of O2(1Σg+), O2(1?g) and O2(3Σg) in the sensitization of O2 by triplet states, Chem. Phys. Lett., 1994, 221, 7.

    Article  CAS  Google Scholar 

  22. R. Schmidt, F. Shafii, C. Schweitzer, A. A. Abdel-Shafi, F. Wilkinson, Charge transfer and non-charge transfer processes competing in the sensitization of singlet oxygen: Formation of O2(1Σg+), O2(1?g) and O2(3Σg) during oxygen quenching of triplet excited naphthalene derivatives, J. Phys. Chem. A, 2001, 105, 1811.

    Article  CAS  Google Scholar 

  23. C. Schweitzer, Z. Mehrdad, F. Shafii, R. Schmidt, Common Marcus-type dependence of the charge transfer induced processes in the sensitization and quenching of singlet oxygen by naphthalene derivatives, J. Phys. Chem. A, 2001, 105, 5309.

    Article  CAS  Google Scholar 

  24. R. Schmidt, F. Shafii, The influence of charge transfer interactions on the sensitization of singlet oxygen: Formation of O2(1Σg+), O2(1?g) and O2(3Σg) during oxygen quenching of triplet excited biphenyl derivatives, J. Phys. Chem. A, 2001, 105, 8871.

    Article  CAS  Google Scholar 

  25. C. Schweitzer, Z. Mehrdad, F. Shafii, R. Schmidt, Charge transfer induced quenching of triplet sensitizers by ground state oxygen and of singlet oxygen by ground state sensitizers: A common deactivation channel, Phys. Chem. Chem. Phys, 2001, 3, 3095.

    Article  CAS  Google Scholar 

  26. Z. Mehrdad, A. Noll, E.-W. Grabner, R. Schmidt, Sensitization of singlet oxygen via encounter complexes and via exciplexes of pp* triplet excited sensitizers and oxygen, Photochem. Photobiol. Sci., 2002, 1, 263.

    Article  CAS  Google Scholar 

  27. C. Schweitzer, Z. Mehrdad, A. Noll, E.-W. Grabner, R. Schmidt, The mechanism of photosensitized generation of singlet oxygen during oxygen quenching of triplet states and the general dependence of the rate constants and efficiencies of O2(1Σg+), O2(1?g) and O2(3Σg) formation on sensitizer triplet state energy and oxidation potential, J. Phys. Chem. A, 2003, 107, 2192.

    Article  CAS  Google Scholar 

  28. D. Rehm, A. Weller, Kinetics of fluorescence quenching by electron and hydrogen-atom transfer, Isr. J. Chem., 1970, 8, 259.

    Article  CAS  Google Scholar 

  29. A. Weller, Photoinduced electron transfer in solution: Exciplex and radical ion pair formation free enthalpies and their solvent dependences, Z. Phys. Chem. (Munich), 1982, 133, 93.

    Article  CAS  Google Scholar 

  30. S. L. Mattes and S. Farid, Photochemical electron-transfer reactions of olefins and related compounds, in Organic Photochemistry, ed. A. Padwa, Marcel Dekker, New York, 1983, vol. 6, p. 233.

    CAS  Google Scholar 

  31. P. J. Wagner, R. A. Leavitt, Photoreduction of a-trifluoroacetophenone. Competitive charge transfer and hydrogen abstraction, J. Am. Chem. Soc., 1972, 95, 3669.

    Article  Google Scholar 

  32. R. O. Loutfy, S. K. Dogra, R. W. Yip, Interaction between the excited triplet-state of ketones and olefins—role of triplet exciplexes, Can. J. Chem., 1979, 57, 342.

    Article  CAS  Google Scholar 

  33. J. Mattay, J. Gersdorf, K. Buchkremer, Radical ions and photochemical charge-transfer phenomena. 16. Photoreactions of biacetyl with electron-rich olefins—an extended mechanism, Chem. Ber., 1987, 120, 307.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reinhard Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, R. The balance between charge transfer and non-charge transfer pathways in the sensitization of singlet oxygen by ππ* triplet states. Photochem Photobiol Sci 4, 481–486 (2005). https://doi.org/10.1039/b502735g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b502735g

Navigation