Skip to main content
Log in

Triplet- vs. singlet-state imposed photochemistry. The role of substituent effects on the photo-Fries and photodissociation reaction of triphenylmethyl silanes

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photochemistry of three structurally very similar triphenylmethylsilanes 1, 2, 3 [p-X–C6H4–CPh2-SiMe3: X = PhCO, 1; H, 2; Ph(OCH2CH2O)C, 3] is described by means of 248 and 308 nm nanosecond laser flash photolysis (ns-LFP), femtosecond LFP, EPR spectroscopy, emission spectroscopy (fluorescence, phosphorescence), ns-pulse radiolysis (ns-PR), photoproduct analysis studies in MeCN, and X-ray crystallographic analysis of the two key-compounds 1 and 2. The photochemical behavior of 1, 2 and 3 is discussed and compared with that of a fourth one, 4, bearing on the p-position an amino group (X = Me2N) and whose detailed photochemistry we reported earlier (J. Org. Chem., 2000, 65, 4274–4280). Silane 1 undergoes on irradiation with 248 and 308 nm laser light a fast photodissociation of the C–Si bond giving the p-(benzoyl)triphenylmethyl radical (1·) with a rate constant of kdiss = 3 × 107 s−1. The formation of 1· is a one-quantum process and takes place via the carbonyl triplet excited state with high quantum yield (Φrad = 0.9); the intervention of the triplet state is clearly demonstrated through the phosphorescence spectrum and quenching experiments with ferrocene (kq = 9.3 × 109 M−1 s−1), Et3N (1.1 × 109 M−1 s−1), and styrene (3.1 × 109 M−1 s−1) giving quenching rate constants very similar to those of benzophenone. For comparative reasons radical 1· was generated independently from p-(benzoyl)triphenylmethyl bromide via pulse radiolysis in THF and its absorption coefficient at λmax = 340 nm was determined (e = 27770 M−1 cm−1). We found thus that the p-PhCO-derivative 1 behaves similar to the p-Me2N one 4 (the latter giving the p-(dimethylamino)triphenylmethyl radical with Φrad = 0.9), irrespective of their completely different ground state electronic properties. In contrast, compounds 2, 3 that bear only the aromatic chromophore give by laser or lamp irradiation both, (i) radical products [Ph3C· and p-Ph(OCH2CH2O)C–C6H4–C(·)Ph2, respectively] after dissociation of the central C–Si bond (Φrad = 0.16), and (ii) persistent photo-Fries rearrangement products (of the type of 5-methylidene-6-trimethylsilyl-1,3-cyclohexadiene) absorbing at 300–450 nm and arising from a 1,3-shift of the SiMe3 group from the benzylic to the ortho-position of the aromatic ring (Φ ≈ 0.85 for 2). Using fs-LFP on 2 we showed that the S1 state recorded at 100 fs after the pulse decays on a time scale of 500 fs giving Ph3C· through C–Si bond dissociation. In a second step and within the next 10 ps trityl radicals either escape from the solvent cage (the quantum yield of Ph3C· formation Φrad = 0.16 was measured with ns-LFP), or undergo in-cage recombination to photo-Fries products. Thus, singlet excited states (S1) of the aromatic organosilanes (2, 3) prefer photo-Fries rearrangement products, while triplet excited states (1, 4) favor free radicals. Both reactions proceed via a common primary photodissociation step (C–Si bond homolysis) and differentiate obviously in the multiplicity of the resulting geminate radical pairs; singlet radical pairs give preferably photo-Fries products following an in-cage recombination, while triplet radical pairs escape the solvent cage (MeCN). The results demonstrate the crucial role which is played by the chromophore which prescribes in a sense, (i) the multiplicity of the intervening excited state and consequently that of the resulting geminate radical pair, and (ii) the dominant reaction path to be followed: the benzophenone- and anilino-chromophore present in silanes 1 and 4, respectively, impose effective intersystem crossing transitions (kisc = 1011 s−1 and 6 × 108 s−1, respectively) leading to triplet states and finally to free radical products, while the phenyl chromophore in 2 and 3, possessing ineffective isc (kisc = 6 × 106 s−1) leads to photo-Fries product formation via the energetic high lying S1 state [ ≈ 443 kJ mol−1 (106 kcal mol−1)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Georgakilas, Photodissociation of p-arylmethyl-benzophenone derivatives, PhD Thesis, University of Ioannina, Greece, 1998.

    Google Scholar 

  2. S. J. Cristol, T. H. Bindel, Photosolvolyses and attendant photoreactions involving carbocations, Org. Photochem., 1983, 6, 327–415.

    CAS  Google Scholar 

  3. S. A. Fleming, J. A. Pincock, Photochemical cleavage reactions of benzyl-heteroatom sigma bonds, Org. Mol. Photochem., 1999, 3, 211–281, and references cited therein.

    CAS  Google Scholar 

  4. J. A. Pincock, Photochemistry of arylmethyl esters in nucleophilic solvents: Radical pair and ion pair intermediates, Acc. Chem. Res., 1997, 30, 43–49.

    Article  CAS  Google Scholar 

  5. H. E. Zimmerman, Meta effect in organic photochemistry: Mechanistic and exploratory organic photochemistry, J. Am. Chem. Soc., 1995, 117, 8988–8991.

    Article  CAS  Google Scholar 

  6. H. E. Zimmerman, Meta-ortho effect in organic photochemistry: Mechanistic and exploratory organic photochemistry, J. Phys. Chem. A, 1998, 102, 5616–5621.

    Article  CAS  Google Scholar 

  7. A. L. Pincock, J. A. Pincock, R. Stefanova, Substituent effects on the rate constants for the photo-claisen rearrangement of allyl aryl ethers, J. Am. Chem. Soc., 2002, 124, 9768–9778.

    Article  CAS  PubMed  Google Scholar 

  8. W. M. McGowan, E. F. Hilinski, Competitive bond homolysis and intersystem crossing in picosecond time regime photodissociation of 9-bromofluorene and 9-chlorofluorene in cyclohexan, J. Am. Chem. Soc., 1995, 117, 9019–9025.

    Article  CAS  Google Scholar 

  9. J. Dreyer, K. S. Peters, Picosecond kinetic study of the photoinduced homolysis and heterolysis of diphenylmethyl bromide. The nature of the conversion from radical pairs to ion pair, J. Phys. Chem., 1996, 100, 15156–15161.

    Article  CAS  Google Scholar 

  10. C. Hansch, A. Leo, R. W. Taft, Chem. Rev., 1991, 91, 165–195.

    Article  CAS  Google Scholar 

  11. J. McEven, K. Yates, Substituent effects in the photohydration of styrenes and phenylacetylenes - an attempt to establish a sigma- scale for excited-state reaction, J. Phys. Org. Chem., 1991, 4, 193–206.

    Article  Google Scholar 

  12. N. Turro, A. L. Buchachenko, V. F. Tarasov, How spin stereochemistry severely complicates the formation of a carbon-carbon bond between 2 reactive radicals in a supercage, Acc. Chem. Res., 1995, 28, 69–80.

    Article  CAS  Google Scholar 

  13. E. N. Step, A. L. Buchachenko, N. Turro, The cage effect in the photolysis of (s)-(+)-alpha-methyldeoxybenzoin - can triplet radical pairs undergo germinate recombination in nonviscous homogeneous solution, J. Org. Chem., 1992, 57, 7018–7028.

    Article  CAS  Google Scholar 

  14. N. Turro, From molecular chemistry to supramolecular chemistry to superdupermolecular chemistry. Controlling covalent bond formation through non-covalent and magnetic interactions, Chem. Commun., 2002, 2279–2292.

    Google Scholar 

  15. A. L. Buchachenko, E. L. Frankevich, Chemical Generation and Reception of Radio- and Microwaves, VCH, Weinheim, 1994.

    Google Scholar 

  16. N. S. Allen, Photopolymerization and photoimaging Science and Technology, Elsevier Applied Science, London, 1989.

    Book  Google Scholar 

  17. F. Z. Dörwald, Organic Synthesis on Solid Phase, Wiley-VCH, Weinheim, 2002, p. 52.

    Book  Google Scholar 

  18. M. Schelhaas, H. Waldmann, Protecting group strategies in organic synthesis, Angew. Chem., Int. Ed., 1996, 35, 2056–2083.

    Article  CAS  Google Scholar 

  19. M. G. Siskos, A. K. Zarkadis, S. Steenken, N. Karakostas, S. K. Garas, Photodissociation of N-(triphenylmethyl)anilines: A laser flash photolysis, ESR, and product analysis study, J. Org. Chem., 1998, 63, 3251–3259.

    Article  CAS  Google Scholar 

  20. M. G. Siskos, A. K. Zarkadis, S. Steenken, N. Karakostas, Photodissociation of N-arylmethylanilines: A laser flash photolysis, fluorescence, and product analysis study, J. Org. Chem., 1999, 64, 1925–1931.

    Article  CAS  PubMed  Google Scholar 

  21. E. Ragga, PhD Thesis, University of Ioannina, Greece, in preparation.

  22. A. K. Zarkadis, M. F. Budyka, M. G. Siskos, E. Ragga, G. Pistolis, Correlating Ground and Excited State Properties: The Case of the Photodissociation of N-Arylmethyl Anilines, submitted.

  23. M. F. Budyka, T. S. Zyubina, A. K. Zarkadis, Correlating ground and excited state properties: a quantum chemical study of the photodissociation of the C–N bond in N-substituted anilines, J. Mol. Struct. (THEOCHEM), 2002, 594, 113–125.

    Article  CAS  Google Scholar 

  24. D. A. Tasis, M. G. Siskos, A. K Zarkadis, 4-[Diphenyl(trimethylsilyl)methyl]benzophenone as initiator in the photopolymerization of methyl methacrylate and styrene, Macromol. Chem. Phys., 1998, 199, 1981–1987.

    Article  CAS  Google Scholar 

  25. D. A. Tasis, M. G. Siskos, A. K. Zarkadis, S. Steenken, G. Pistolis, Mechanism of the photodissociation of 4-[diphenyl(trimethylsilyl)methyl]-N,N-dimethylaniline, J. Org. Chem., 2000, 65, 4274–4280.

    Article  CAS  PubMed  Google Scholar 

  26. D. A. Tasis, Photodissocaition of aniline- and benzophenone-derivatives. Application in photopolymerizations, PhD Thesis, University of Ioannina, Greece, 2001.

    Google Scholar 

  27. H. Gilman, A. G. Brook, L. S. Miller, Tetra-substituted Aryl Silanes, J. Am. Chem. Soc., 1953, 75, 3757–3759.

    Article  CAS  Google Scholar 

  28. A. K. Zarkadis, Zur Autoxidation von a-metallierten Methylradikalen und ihren Dimeren, PhD Thesis, University of Dortmund, Germany, 1981

    Google Scholar 

  29. H. Hillgärtner, W. P. Neumann, W. Schulten, A. K. Zarkadis, Long-lived alpha-metallated methyl radicals and their dimers, J. Organomet. Chem., 1980, 201, 197–211.

    Article  Google Scholar 

  30. G. Wittig, W. Kairies, W. Hopf, Über das p-Benzoyl-triphenyl-methyl (gleichzeitig ein Beitrag zur Valenz-Tautomerie ungesättigter Systeme), Ber. Dtsch. Chem. Ges., 1932, 65, 767–776.

    Article  Google Scholar 

  31. D. F. Eaton, in Handbook of Organic Photochemistry, ed. J. C. Scaiano, CRC Press, Boca Raton, FL, 1989, vol. I, p. 237.

    Google Scholar 

  32. R. A. McClelland, N. Banait, S. Steenken, Electrophilic reactivity of the triphenylmethyl carbocation in aqueous-solutions, J. Am. Chem. Soc., 1986, 108, 7023–7027.

    Article  CAS  Google Scholar 

  33. R. A. McClelland, N. Banait, S. Steenken, Electrophilic reactions of xanthylium carbocations produced by flash-photolysis of 9-xanthenols, J. Am. Chem. Soc., 1989, 111, 2929–2935.

    Article  CAS  Google Scholar 

  34. V. Wintgens, L. Jonson, J. C. Scaiano, Use of a photoreversible fulgide as an actinometer in one-laser and 2-laser experiments, J. Am. Chem. Soc., 1988, 110, 511–517.

    Article  CAS  Google Scholar 

  35. G. L. Hug, Natl. Stand. Ref. Data Ser., 1981, 69, 1.

    Google Scholar 

  36. J. L. Faria, S. Steenken, Photoionization (248 or 308 nm) of triphenylmethyl radical in aqueous-solution. Formation of triphenylmethyl carbocation, J. Am. Chem. Soc., 1990, 112, 1277–1279.

    Article  CAS  Google Scholar 

  37. J. Jortner, M. Ottolenghi, G. Stein, The effect of oxygen on the photochemistry of the iodide ion in aqueous solutions, J. Phys. Chem., 1962, 66, 2042–2045.

    Article  CAS  Google Scholar 

  38. J. Jortner, M. Ottolenghi, G. Stein, On the photochemistry of aqueous solutions of chloride, bromide, and iodide Ions, J. Phys. Chem., 1964, 68, 247–255.

    Article  CAS  Google Scholar 

  39. V. Jagannadham, S. Steenken, Reactivity of alpha-heteroatom-substituted alkyl radicals with nitrobenzenes in aqueous-solution. An entropy-controlled electron-transfer addition mechanism, J. Am. Chem. Soc., 1988, 110, 2188–2192.

    Article  CAS  Google Scholar 

  40. J. Bartl, S. Steenken, H. Mayr, R. A. McClleland, Photo-heterolysis and photo-homolysis of substituted diphenylmethyl halides, acetates, and phenyl ethers in acetonitrile. Characterization of diphenylmethyl cations and radicals generated by 248 nm laser flash-photolysis, J. Am. Chem. Soc., 1990, 112, 6918–6928.

    Article  CAS  Google Scholar 

  41. F. H. Watson, Jr., M. A. El-Bayoumi, Phosphorescence Enhancement in Phenyl-Substituted Methanes, J. Chem. Phys., 1971, 55, 5464–5470.

    Article  CAS  Google Scholar 

  42. M. A. Pak, D. P. Shigorin, G. G. Konoplev, O. I. Bol’shakova, Russ. J. Phys. Chem., 1986, 60, 1083–1806.

    Google Scholar 

  43. S. L. Murov, I. Carmichael and G. L. Hug, Handbook of Photochemistry, 2nd edn., Marcel Dekker, Inc., New York, 1993.

    Google Scholar 

  44. W. L. Wallace, R. P. Van Duyne, F. D. Lewis, Quenching of aromatic hydrocarbon singlets and aryl ketone triplets by alkyl disulfides, J. Am. Chem. Soc., 1976, 98, 5319–5326.

    Article  CAS  Google Scholar 

  45. D. C. Neckers, S. Rajadurai, O. Valdes-Aguilera, A. Zakrzewski, S. M. Linden, Tetrahedron Lett., 1988, 29, 5109.

    Article  CAS  Google Scholar 

  46. A. V. Nikolaitchik, PhD Thesis, Bowling Green State University, USA, 1996.

  47. V. V. Jarikov, A. V. Nikolaitchik, D. C. Neckers, Photochemistry and photophysics of (p-benzoylphenyl)diphenylmethyl and (p-benzoylphenyl)bis(4-tert-butylphenyl) radicals in different solvents, J. Phys. Chem. A, 2000, 104, 5131–5140.

    Article  CAS  Google Scholar 

  48. Neckers and coworkers reported, 25a however, a considerably lower value (ε = 5700 M−1 cm−1 at 340 nm), measuring it from the equilibrium: 1· ⇌ dimer. In contrast, in the pulse radiolysis technique we measured the optical density of the radical 1· 8 μs after the pulse avoiding thus concentration decline due to dimerization. The dimerization rate constant for trityl radicals is low, in the order of 300 M−1 s−1. 36,40 Moreover, such a low e value would lead to a quantum yield >4 for the photodissociation of 1.

  49. R. V. Bensasson, J.-C. Gramain, Benzophenone triplet properties in acetonitrile and water. Reduction by lactams, J. Chem. Soc., Faraday Trans. 1, 1980, 76, 1801–1810.

    Article  Google Scholar 

  50. G. Amirzadeh, W. Schnabel, On the photoinitiation of free-radical polymerization-laser flash-photolysis investigations on thioxanthone derivatives, Macromol. Chem., 1981, 182, 2821–2835.

    Article  CAS  Google Scholar 

  51. K. Bhattacharyya, P. K. Das, Nanosecond transient processes in the triethylamine quenching of benzophenone triplets in aqueous alkaline media. Substituent effect, ketyl radical deprotonation, and secondary photoreduction kinetics, J. Phys. Chem., 1986, 90, 3987–3993.

    Article  CAS  Google Scholar 

  52. N. Shimo, N. Nakashima, K. Yoshihara, The UV absorption-spectrum of trimethylsilyl radical in the gas-phase, Chem. Phys. Let., 1986, 125, 303–306.

    Article  CAS  Google Scholar 

  53. C. Chatgilialoglu, K. U. Ingold, J. Lusztyk, A. S. Nazran, J. C. Scaiano, Formation, decay, and spectral characterization of some alkyl-substituted carbon-centered, silicon-centered, germanium-centered, and tin-centered radicals, Organometallics, 1983, 2, 1332–1335.

    Article  CAS  Google Scholar 

  54. A. Bromberg, K. H. Schmidt, D. Meisel, Photochemistry and photophysics of phenylmethyl radicals, J. Am. Chem. Soc., 1984, 106, 3056–3057.

    Article  CAS  Google Scholar 

  55. A. Bromberg, K. H. Schmidt, D. Meisel, Photophysics and photochemistry of arylmethyl radicals in liquids, J. Am. Chem. Soc., 1985, 107, 83–91.

    Article  CAS  Google Scholar 

  56. A. Bromberg, D. Meisel, Photophysics of arylmethyl radicals at 77 K. Structure photoreactivity correlation, J. Phys. Chem., 1985, 89, 2507–2513.

    Article  CAS  Google Scholar 

  57. D. Meisel, P. K. Das, G. L. Hug, K. Bhattacharyya, R. W. Fessenden, Temperature-dependence of the lifetime of excited benzyl and other arylmethyl radical, J. Am. Chem. Soc., 1986, 108, 4706–4710.

    Article  CAS  Google Scholar 

  58. J. A. Schmidt, E. F. Hilinski, Evolution of electronically excited triphenylmethyl radical. Picosecond preparation-pump–probe spectroscopic experiments, J. Am. Chem. Soc., 1988, 110, 4036–4038.

    Article  CAS  Google Scholar 

  59. H. Hiratsuka, S. Kobayasi, T. Minegishi, M. Hara, T. Okutsu, S. Murakami, Nanosecond laser flash photolysis and steady-state photolysis studies of benzyltrimethylsilane and trimethylsilyldiphenylmethane, J. Phys. Chem. A, 1999, 103, 9174–9183.

    Article  CAS  Google Scholar 

  60. K. R. Kopecky, M.-P. Lau, Thermal reaction between 5-methylene-1,3-cyclohexadiene and styrene, J. Org. Chem., 1978, 43, 526–528.

    Article  Google Scholar 

  61. W. A. Pryor, W. D. Graham, J. G. Green, Radical Production from interaction of closed-shell molecules. 5. The chemistry of methylenecyclohexadiene, J. Org. Chem., 1978, 43, 526–528.

    Article  CAS  Google Scholar 

  62. N. I. Tzerpos, A. K. Zarkadis, R. P. Kreher, L. Repas, M. Lehnig, Diphenylpyridylmethyl radicals. Synthesis, dimerization and ENDOR spectroscopy of diphenyl(2-pyridyl, 3-pyridyl or 4-pyridyl)methyl radicals. Bond-dissociation enthalpies of their dimers, J. Chem. Soc., Perkin Trans. 2, 1995, 755–761.

    Google Scholar 

  63. W. J. Leigh, T. R. Owens, The one- and two-photon photochemistry of benzylsilacyclobutanes, acyclic benzylsilanes, and 1,1,2-triphenylsilacyclobutane, Can. J. Chem., 2000, 78, 1459–1468.

    Article  CAS  Google Scholar 

  64. W. J. Leigh, N. P. Toltl, P. Apodaka, M. Castruita, K. H. Pannell, Photochemistry of group 14 1,1,1-trimethyl-2,2,2-triphenyldimetallanes (Ph3MM’Me3; M, M’ = Si, Ge). Direct detection and characterization of silene and germene reactive intermediates, Organometallics, 2000, 19, 3232, and references cited therein.

    Article  CAS  Google Scholar 

  65. G. Perdikomatis, Photodissociation vs. photo-Fries rearrangement. The case of benzylsilanes, PhD Thesis, University of Ioannina, Greece, 2004.

    Google Scholar 

  66. A. Triantafyllou, Photophysics and photochemistry of xanthene derivatives, MS Thesis, University of Ioannina, Greece, 2003.

    Google Scholar 

  67. M. G. Siskos, A. K. Zarkadis, A. Triantafyllou, V. S. Melissas, O. Brede, R. Hermann, G. G. Gurzadyan, P. S. Gritzapis, S1-Mediated photo-Fries rearrangement. The case of 9-xanthenyl silanes, submitted.

  68. We repeated and confirmed the LFP results reported for Ph2CH–SiMe3 by Hiratsuka et al.31 and found the quantum yields Φ ≈ 0.05 for the formation of the Ph2CH· radical and Φ ≈ 0.95 for the photo-Fries product.

  69. The bond dissociation enthalpy (BDH) of the C–Si bond in 2 is estimated as 231.4 ± 12.1 kJ mol−1 (55.3 ± 2.9 kcal mol−1), based on the BDH(‘Ph3C–CPh3’) = 44.8 kJ mol−1 (10.7 kcal mol−1)36 and BDH(Me3Si–SiMe3) = 331.8 ± 12.1 kJ mol−1 (79.3 ± 2.9 kcal mol−1)35a and applying Hess’s Law as used by Zavitsas and co-workers.35b A p-benzoyl group introduces in benzyl radicals a radical stabilization of ca. 5.9 kJ mol−1 (1.4 kcal mol−1),35c and therefore weakness the C–Si bond further, making the BDH(C–Si) in 1ca. 225.5 kJ mol−1 (53.9 kcal mol−1). A p-Me2N-group in benzyl radical introduces 8.8 kJ mol−1 (2.1 kcal mol−1) radical stabilization,35d therefore we expect for the corresponding BDH(C–Si) a value of 222.6 kJ mol−1 (53.2 kcal mol−1): R. Becerra and R. Walsh, The chemistry of organic silicon compounds, vol. 2, ed. Z. Rappoport and Y. Apeloig, 1998, Wiley, New York, p. 153.

  70. N. Matsunaga, D. W. Rogers, A. A. Zavitsas, Pauling’s electronegativity equation and a new corollary accurately predict bond dissociation enthalpies and enhance current understanding of the nature of the chemical bond, J. Org. Chem., 2003, 68, 3158–3172.

    Article  CAS  PubMed  Google Scholar 

  71. D. Arnold, NATO ASI, ed. H. G. Viehe, in Substituted Effects in Radical Chemistry, D. Reidel Publishing, Dordrecht, 1986, p. 171.

    Chapter  Google Scholar 

  72. Y.-D. Wu, C.-L. Wong, K. W. K. Chan, G.-Z. Ji, X.-K. Jiang, Substituent effects on the C–H bond dissociation energy of toluene. A density functional study, J. Org. Chem., 1996, 61, 746–750.

    Article  CAS  PubMed  Google Scholar 

  73. W. P. Neumann, W. Uzick, A. K. Zarkadis, Sterically hindered free-radicals. Substituent-dependent stabilization of para-substituted triphenylmethyl radicals, J. Am. Chem. Soc., 1986, 108, 3762–3770.

    Article  CAS  Google Scholar 

  74. The e6 value of 6 (1030.0 M−1 cm−1, was derived from a linear correlation we found between e values of 1,3-exocyclic cyclohexatrienes reported in the literature and the oscillator strength values (f) we calculated using the semiempirical method CNDO/S37a (e = 2574.8 f, r = 0.977, see Table A and Fig. D in the ESI). This computational method was used earlier by Hiratzuka et al.31 for PhCH2SiMe3 and Ph2CHSiMe3 and give also good results in the case of the 9-Me3Si-xanthenes;34c J. Del Bene, H. H. Jaffe, J. Am. Chem. Soc., 1985, 107, 7767.

    Article  Google Scholar 

  75. H. Shizuka, K. Okazaki, M. Tanaka, M. Ishikawa, M. Sumitani, K. Yoshihara, Intramolecular 2p-p*–3d-p charge-transfer in the excited-state of phenyldisilane studied by picosecond and nanosecond laser spectroscopy, Chem. Phys. Lett., 1985, 113, 89–92.

    Article  CAS  Google Scholar 

  76. S. Lochbrunner, M. Zissler, J. Piel, E. Riedle, A. Spiegel, T. Bach, Real time observation of the photo-Fries rearrangement, J. Chem. Phys., 2004, 120, 11634–11639.

    Article  CAS  PubMed  Google Scholar 

  77. K. U. Ingold, in Free Radicals, ed. J. K. Kochi, Wiley, New York, 1973, vol. 1, p. 37.

  78. A. K. Zarkadis, W. P. Neumann, W. Uzick, Sterically hindered free-radicals. Wittig’s radical 4-benzoyltriphenylmethyl and analogous mono-4-substituted trityl radicals, Chem. Ber., 1985, 118, 1183–1192.

    Article  CAS  Google Scholar 

  79. M. A. Miranda, in CRC Handbook of Organic Photochemistry and Photobiology, ed. W. M. Horspool, 1994, p. 570.

  80. N. Nakashima, M. Sumitani, I. Ohmine, K. Yoshihara, Nanosecond laser photolysis of the benzene monomer and eximer, J. Chem. Phys., 1980, 72, 2226–2230.

    Article  CAS  Google Scholar 

  81. N. Nakashima, H. Inoue, M. Sumitani, K. Yoshihara, Laser flash-photolysis of benzene. 3. Sn–S1 absorption of gaseous benzene, J. Chem. Phys., 1980, 73, 5976–5980.

    Article  CAS  Google Scholar 

  82. M. Ya Melnikov, V. A. Smirnov, Handbook of Photochemistry of Organic Radicals, Begell House, New York, 1996.

    Google Scholar 

  83. R. Bonneau, I. Carmichael, G. L. Hug, Molar absorption-coefficients of transient species in solution, Pur. Appl. Chem., 1991, 63, 290–299.

    Article  Google Scholar 

  84. J. Michl and V. Bonacic-Koutecký, Electronic Aspects of Organic Photochemistry, Wiley-Interscience, 1990, pp. 138, 292.

    Google Scholar 

  85. M. Klessinger and J. Michl, Excited States and Photochemistry of Organic Molecules, Verlag Chemie, Weinheim, 1995, p. 348.

    Google Scholar 

  86. J. Michl and V. Balaji, in Computational Advances in Organic Chemistry: Molecular Structure and Reactivity, ed. C. Ögretir, I. G. Csizmadia and E. A. Lang, NATO ASI Series, vol. 330, Kluwer, Dordrecht, 1991, p. 323.

  87. J. Michl, Relationship of bonding to electronic-spectra, Acc. Chem. Res., 1990, 23, 127–128.

    Article  CAS  Google Scholar 

  88. M. F. Budyka, T. S. Zyubina, A. K. Zarkadis, Quantum chemical study of the Si–C bond photodissociation in benzylsilane derivatives: a specific ‘excited-state’ silicon effect, J. Mol. Struct. (THEOCHEM), 2004, 668, 1–11.

    Article  CAS  Google Scholar 

  89. A. L. Sobolewski, W. Domcke, C. Dedonder-Lardeux, C. Jouvet, Excited-state hydrogen detachment and hydrogen transfer driven by repulsive 1ps* states: A new paradigm for nonradiative decay in aromatic biomolecules, Phys. Chem. Chem. Phys., 2002, 4, 1093–1100.

    Article  CAS  Google Scholar 

  90. For PhCH2–SiMe3 a similar energy of ES = 436.0 kJ mol−1 (104.2 kcal mol−1) is reported in ref. 31.

  91. By the benzylic C–H photodissociation of Ph2CH–H49a and p-MeO–C6H4CH2–H49b or the C–C dissociation in C6H4CH2–Me49c and p-MeC(=O)–C6H4CH2–Et,49d the phenyl T1-state (3ππ*) is the intervening symmetry-allowed state for the dissociation, in contrast to the S1(1ππ*), which is symmetry-forbidden. See also ref. 45b for PhCH2–H.

  92. M. Fujiwara, A. Yamassaki, K. Mishima, K. Toyomi, A mechanism of photodissociation of diphenylmethane to a diphenylmethyl radical in solution, J. Chem. Phys., 1998, 109, 1359–1365.

    Article  CAS  Google Scholar 

  93. M. Fujiwara, K. Toyomi, Photodissociation of C–H and C–O bonds of p-methoxytoluene and p-methoxybenzyl alcohol in solution, J. Chem. Phys., 1997, 107, 9354–9360.

    Article  CAS  Google Scholar 

  94. M. Fujiwara, K. Mishima, Phys. Chem. Chem. Phys., 2000, 2, 3791–3796.

    Article  CAS  Google Scholar 

  95. C.-L. Huang, J.-C. Jiang, Y. T. Lee, C.-K. Ni, Photodissociation of ethylbenzene and n-propylbenzene in a molecular beam, J. Chem. Phys., 2002, 117, 7034–7040.

    Article  CAS  Google Scholar 

  96. N. Ichinose, K. Mizuno, Y. Otsuji, H. Tachikava, Theoretical study on the photochemical C–C bond cleavage reaction via acetophenone-type excited triplet state, Tetrahedron Lett., 1994, 35, 587–590.

    Article  CAS  Google Scholar 

  97. J. Malkin, Photochemical and Photophysical Properties of Aromatic Compounds, CRC, Boca Raton, FL, 1992, p. 117, 201.

    Google Scholar 

  98. F. Saito, S. Tobita, H. Shizuka, Photoionization of aniline in aqueous solution and its photolysis in cyclohexane, J. Chem. Soc., Faraday Trans., 1996, 92, 4177–4185.

    Article  CAS  Google Scholar 

  99. P. M. Rentzepis, Ultrafast processes, Science, 1970, 169, 239.

    Article  CAS  PubMed  Google Scholar 

  100. D. E. Damschen, C. D. Merritt, D. L. Perry, G. W. Scott, L. D. Talley, Intersystem crossing kinetics of aromatic ketones in condensed phase, J. Phys. Chem., 1978, 82, 2268–2272.

    Article  CAS  Google Scholar 

  101. M. Miyasaka, T. Nagata, M. Kiri, N. Mataga, Femtosecond–picosecond laser photolysis studies on reduction process of excited benzophenone with N-methyldiphenylamine in acetonitrile solution, J. Phys. Chem., 1992, 96, 8060–8065.

    Article  CAS  Google Scholar 

  102. B. Shah, D. C. Neckers, Spectrum, 2003, 16, 19–21.

    Google Scholar 

  103. E. B. Fleischer, N. Sung, S. Hawkinson, Crystal structure of benzophenone, J. Phys. Chem., 1968, 72, 4311–4312.

    Article  CAS  Google Scholar 

  104. M. A. Brook, Silicon in Organic, Organometallic, and Polymer Chemistry, Wiley, New York, 2000, ch. 14, p. 480.

    Google Scholar 

  105. O. Brede, R. Hermann, S. Naumov, G. P. Perdikomatis, A. K. Zarkadis, M. G. Siskos, Indication of molecular oscillations during free electron transfer: reaction of butyl chloride parent ions with benzyltrimethylsilanes, Chem. Phys. Lett., 2003, 376, 370–375.

    Article  CAS  Google Scholar 

  106. O. Brede, R. Hermann, S. Naumov, A. K. Zarkadis, G. P. Perdikomatis, M. G. Siskos, Free electron transfer mirrors rotational conformers of substituted aromatics: Reaction of benzyltrimethylsilanes with n-butyl chloride parent radical cations, Phys. Chem. Chem. Phys., 2004, 6, 2267–2275.

    Article  CAS  Google Scholar 

  107. See also the extensive work on organosilane radical cations: E. Baciocchi, M. Bietti, O. Lanzaluna, Mechanistic aspects of beta-bond-cleavage reactions of aromatic radical cations, Acc. Chem. Res., 2000, 33, 243–251.

    Article  CAS  PubMed  Google Scholar 

  108. K. P. Dockery, J. P. Dinnocenzo, S. Farid, J. L. Goodman, I. R. Gould, W. P. Todd, Nucleophile-assisted cleavage of benzyltrialkylsilane cation radicals, J. Am. Chem. Soc., 1997, 119, 1876–1883.

    Article  CAS  Google Scholar 

  109. M. G. Steinmetz, Organosilane photochemistry, Chem. Rev., 1995, 95, 1527–1588.

    Article  CAS  Google Scholar 

  110. A. G. Brook, The chemistry of organic silicon compounds, vol. 2, ed. Z. Rappoport and Y. Apeloig, 1998, Wiley, New York, p. 1233.

  111. J. P. Toscano, Structure and reactivity of organic intermediates as revealed by time-resolved infrared spectroscopy, Adv. Photochem., 2001, 26, 41–65.

    CAS  Google Scholar 

  112. H. Garcia, R. Martinez-Utrilla, M. A. Miranda, Cyclic acetals as carbonyl blocking groups in the photo-Fries rearrangement of acyl substituted aryl esters, Tetrahedron, 1985, 41, 3131–3134.

    Article  CAS  Google Scholar 

  113. C. Cui, R. G. Weiss, Photo-Fries rearrangements of 2-naphthyl acylates as probes of the size and shape of guest sites afforded by unstretched and stretched low-density polyethylene films. A case of remarkable selectivity, J. Am. Chem. Soc., 1993, 115, 9820–9821.

    Article  CAS  Google Scholar 

  114. W. J. Leigh, G. W. Sluggett, Triplet-state photoreactivity of phenyldisilanes, J. Am. Chem. Soc., 1993, 115, 7531–7532.

    Article  CAS  Google Scholar 

  115. M. Yamaji, A. Suzuki, F. Ito, S. Tero-Kubota, S. Tobita, B. Marciniak, Photochemical studies of a photodissociative initiator based on a benzophenone derivative possessing a thioether moiety, J. Photochem. Photobiol. A: Chem., 2004, 170, 253.

    Article  CAS  Google Scholar 

  116. A. K. Zarkadis, V. Georgakilas, G. Perdikomatis, M. G. Siskos, unpublished results on the photochemistry of PhCO–C6H4–CR1R2–X (R1, R2 = H, Ph; Ph, Ph; H, SiMe3; Ph, SiMe3 and X = Cl, Br).

  117. L. Cermenati, M. Freccero, P. Venturello, A. Albini, SET and exciplex pathways in the photochemical reactions between aromatic ketones and benzylsilane and stannane derivatives, J. Am. Chem. Soc., 1995, 117, 7869–7876.

    Article  CAS  Google Scholar 

  118. W. R. Bergmark, M. Meador, J. Isaacs, M. Thim, The photochemistry of ortho-[(trimethylsilyl)methyl]acetophenone, Tetrahedron, 1983, 39, 1109–1111.

    Article  CAS  Google Scholar 

  119. Me3Si-migration to the carbonyl oxygen of aromatic ketones is, however, observed by carbonyl complexation with Lewis-acids, latter rendering the 1ππ* (S1) state lower in energy than the usual 3np* (T1), see for example: S. Fakuzumi, N. Satoh, T. Okamoto, K. Yasui, T. Suenobu, Y. Seko, M. Fujitsuka, O. Ito, Change in spin state and enhancement of redox reactivity of photoexcited states of aromatic carbonyl compounds by complexation with metal ion salts acting as Lewis acids. Lewis acid-catalyzed photoaddition of benzyltrimethylsilane and tetramethyltin via photoinduced electron transfer, J. Am. Chem. Soc., 2001, 123, 7756–7766.

    Article  CAS  Google Scholar 

  120. The Eox of PhNMe2 (0.78 V vs. SCE),61a the Ered of styrene (-2.42 V vs. SCE)60c and MMA (-2.08 V vs. SCE)60c are reported in the literature.

  121. We measured a lower Eox for 4 (0.50 V vs. SCE, MeCN), which should make the ET-process even more exergonic.

  122. R. J. Lacoste, I. Rosenthal, C. H. Schmittinger, Polarographic determination of methyl methacrylate monomer in polymers, Anal. Chem., 1956, 28, 983–985.

    Article  CAS  Google Scholar 

  123. F. D. Lewis, J. M. Wagner-Brennan, A. M. Miller, Formation and behavior of intramolecular N-(styrylalkyl)aniline exciplexes, Can. J. Chem., 1999, 77, 595–604.

    CAS  Google Scholar 

  124. F. D. Lewis, G. D. Reddy, D. M. Bassani, S. Schneider, M. Gahr, Chain-length-dependent and solvent-dependent intramolecular proton-transfer in styrene amine exciplexes, J. Am. Chem. Soc., 1994, 119, 597–605.

    Article  Google Scholar 

  125. K. Tsuda, S. Kondo, K. Yamashita, K. Ito, Initiation mechanism of free-radical polymerization of methyl methacrylate by p-substituted N,N-dimethylanilines, Makromol. Chem., 1984, 185, 81–89.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonios K. Zarkadis.

Additional information

† Electronic supplementary information (ESI) available: Fig. A–D, Table A, absorption coefficient of 6. See http://www.rsc.org/suppdata/pp/b5/b502089a/

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zarkadis, A.K., Georgakilas, V., Perdikomatis, G.P. et al. Triplet- vs. singlet-state imposed photochemistry. The role of substituent effects on the photo-Fries and photodissociation reaction of triphenylmethyl silanes. Photochem Photobiol Sci 4, 469–480 (2005). https://doi.org/10.1039/b502089a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b502089a

Navigation