Skip to main content
Log in

2,6,10-Tris(dialkylamino)trioxatriangulenium salts: a new promising fluorophore. Ion-pair formation and aggregation in non-polar solvents

  • Full Pape
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The D3h symmetric tris(dialkylamino)trioxatriangulenium ((R2N)3TOTA+) ions are structurally related to classical stains and fluorophores such as triphenylmethane dyes and rhodamines. New derivatives of (R2N)3TOTA+, in which long flexible alkyl chains surround the planar and rigid aromatic core, have been synthesized and isolated as hexafluorophosphate salts. In contrast to short-chain derivatives of triphenylmethane dyes, the new compounds described here are soluble in hydrocarbon solvents. The photophysical properties of these carbenium salts are investigated. Characteristic alterations of the photophysical properties as a function of solvent polarity, concentration and temperature are observed. A model to rationalize the phenomena is presented comprising three states of aggregation, i.e. freely solvated ions, tight ion-pairs, and dimers of ion-pairs. Reduced symmetry in the tight ion-pairs is held responsible for the observed splitting of the long wavelength absorption band. Exciton coupling in the ion-pair dimers leads to reduced oscillator strength of the S0–S1 transition. The model is supported by semi-empirical calculations of the structures and electronic transitions of the free cation and its ion-pair(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refences

  1. B. W. Laursen, F. C. Krebs, M. F. Nielsen, K. Bechgaard, J. B. Christensen, N. Harrit 2,6,10-Tris(dialkylamino)-triangulenium Ions. Synthesis, Structure, and Properties of Exceptionally Stable Carbenium Ions J. Am. Chem. Soc. 1998 120 12255

    Article  CAS  Google Scholar 

  2. D. F. Duxbury The Photochemistry and Photophysics of Triphenylmethane Dyes in Solid and Liquid Media Chem. Rev. 1993 93 381

    Article  CAS  Google Scholar 

  3. M. Vogel, W. Rettig Efficient Intramolecular Fluorescence Quenching in Triphenylmethane-Dyes Involving Excited States With Charge Separation and Twisted Conformations Ber. Bunsen-Ges. Phys. Chem. 1985 89 962

    Article  CAS  Google Scholar 

  4. K. H. Drexhage, Structure and Properties of Laser Dyes, in Dye Lasers, ed. F. P. Schäfer, Springer-Verlag, Berlin, 1990, p. 179

    Google Scholar 

  5. R. P. Haugland, Handbook of Fluorescent Probes and Research Products, Molecular Probes, Eugene, 9th edn., 2002

    Google Scholar 

  6. T. Karstens, K. Kobs Rhodamine B and Rhodamine 101 as Reference Substances for Fluorescence Quantum Yield Measurements J. Phys. Chem. 1980 84 1871

    Article  CAS  Google Scholar 

  7. U. Brackmann, Lambdachrome Laser-grade Dyes, Lambda-Physik, Göttingen, 1982

    Google Scholar 

  8. K. Drexhage, Fluorescence Efficiency of Laser Dyes, in Standardisation in Spectrophotometry and Luminescence Measurements, Natl. Bur. Stand. Spec. Publ., No. 466, ed. K. D. Mielen, R. A. Velapoldi and R. Mavrodineanu, Government Printing Office, Washington, DC, 1977

    Google Scholar 

  9. K. H. Drexhage, Structure and Properties of Laser Dyes, in Dye Lasers, ed. F. P. Schäfer, in Topics in Applied Physics Springer-Verlag, Berlin, 1973, vol. 1, p. 144

    Article  CAS  Google Scholar 

  10. J. C. Martin, R. G. Smith Factors Influencing the Basicities of Triarylcarbinols. The Synthesis of Sesquixanthydrol J. Am. Chem. Soc. 1964 86 2252

    Article  CAS  Google Scholar 

  11. J. Reynisson, R. Wilbrandt, V. Brinck, B. W. Laursen, K. Norgaard, N. Harrit, A. M. Brouwer Photophysics of Trioxatriangulenium Ion. Electrophilic Reactivity in the Ground State and Excited Singlet State Photochem. Photobiol. Sci. 2002 1 763

    Article  CAS  Google Scholar 

  12. M. Lofthagen, R. VernonClark, K. K. Baldridge, J. S. Siegel Synthesis of Trioxatricornan and Derivatives. Useful Keystones for the Construction of Rigid Molecular Cavities J. Org. Chem. 1992 57 61

    Article  CAS  Google Scholar 

  13. J. Reynisson, G. B. Schuster, S. B. Howerton, L. D. Williams, R. N. Barnett, C. L. Cleveland, U. Landman, N. Harrit, J. B. Chaires Intercalation of Trioxatriangulenium Ion in DNA: Binding, Electron Transfer, X-Ray Crystallography, and Electronic Structure J. Am. Chem. Soc. 2003 125 2072

    Article  CAS  Google Scholar 

  14. A. Pothukuchy, C. L. Mazzitelli, M. L. Rodriguez, B. Tuesuwan, M. Salazar, J. S. Brodbelt, S. M. Kerwin Duplex and Quadruplex DNA Binding and Photocleavage by Trioxatriangulenium Ion Biochemistry 2005 44 2163

    Article  CAS  Google Scholar 

  15. C. C. Barker, M. H. Bride, A. Stamp Steric Effects in Di- and Tri-Arylmethanes. Part I. Electronic Absorption Spectra of o-Methyl Derivatives of Michlers’s Hydrol Blue and Crystal Violet. Conformational Isomers of Crystal Violet J. Chem. Soc. 1959 3957

    Google Scholar 

  16. J. Griffiths, Colour and Constitution of Organic Molecules, Academic Press, London, 1976, p. 96

    Google Scholar 

  17. G. N. Lewis, T. M. Magel, D. Lipkin Isomers of Crystal Violet Ion. Their Absorption and Re-Emission of Light J. Am. Chem. Soc. 1942 64 1774

    Article  CAS  Google Scholar 

  18. H. B. Lueck, J. L. McHale, W. D. Edwards Symmetry-Breaking Solvent Effects on the Electronic Structure and Spectra of a Series of Triphenylmethane Dyes J. Am. Chem. Soc. 1992 114 2341

    Article  Google Scholar 

  19. F. C. Adam, W. T. Simpson Electronic Spectrum of 4,4’-bis-Dimethylamino Fuchsone and Related Triphenylmethane Dyes J. Mol. Spec. 1959 3 363

    Article  CAS  Google Scholar 

  20. J. Korppi-Tommola, R. W. Yip Solvent Effects on the Visible Absorption Spectrum of Crystal Violet Can. J. Chem. 1981 59 191

    Article  CAS  Google Scholar 

  21. C. S. Oliveira, K. P. Branco, M. S. Baptista, G. L. Indig Solvent and Concentration Effects on the Visible Spectra of Tri-para-Dialkylamino-Substituted Triarylmethane Dyes in Liquid Solutions Spectrochim. Acta, Part A 2002 58A 2971

    Article  CAS  Google Scholar 

  22. F. Feichtmayr, J. Schlag Influence of solvent and concentration on the spectra of triphenylmethane dyes Ber. Bunsen-Ges. Phys. Chem. 1964 68 95

    Article  CAS  Google Scholar 

  23. J. E. Selwyn, J. I. Steinfeld Aggregation of Equilibriums of Xanthene Dyes J. Phys. Chem. 1972 76 762

    Article  CAS  Google Scholar 

  24. A. I. Vogel Physical Properties and Chemical Constitution. Part XII. Ethers and Acetals. J. Chem. Soc. 1948 616

    Google Scholar 

  25. H. L. Tavernier, M. M. Kalashnikov, M. D. Fayer Photoinduced Intermolecular Electron Transfer in Complex Liquids: Experiment and Theory J. Chem. Phys. 2000 113 10191

    Article  CAS  Google Scholar 

  26. M. Kasha, H. R. Rawls, M. A. El-Bauoumi The Exciton Model in Molecular Spectroscopy Pure Appl. Chem. 1965 11 371

    Article  CAS  Google Scholar 

  27. In a double-exponential decay, the terms αiδi are proportional to the area under the decay curve for each decay and therefore to the fractional steady-state intensities of each component. The ratio between absorbed number of photons in a mixture of chromophores is given by the ratio between the absorbances (A = εcl) of each component. Using index M for monomer and D for dimer (Φ is the fluorescence quantum yield), one gets: αMδM/αDδD = (εMcMl/εDcDl) × (ΦM/ΦD) At the total monomer concentration [(Dec2N)3TOTA+PF6] = 7 × 10−6 M, αM = 0.10, δM = 2.6 ns, αD = 0.90, and δD = 26.4 ns (Table 1). As approximation, the overall quantum yields in heptane, ΦD = 0.10, and benzene, ΦM = 0.40, are used. The nitrogen line at 407 nm was used for excitation (see supplementary information†). This wavelength is at the short-wavelength tail of the absorption spectra of the ion-pair and the dimerised ion-pair (Fig. 3), and the absorption coefficients are difficult to estimate exactly. Roughly, they are the same, based on monomer concentration. Therefore, εM/εD ˜ 0.5. When these values are used, a ratio cM/cD ˜ 5.5 × 10−3 is obtained, corresponding to an association constant K = cD/cM2 ˜ 1010 M−1 for the equilibrium 2 M ? D, at this concentration in heptane. The uncertainty of this estimate must be stressed.

  28. C. A. Hunterand, J. K. M. Sanders The nature of π–π interactions J. Am. Chem. Soc. 1990 112 5525

    Article  Google Scholar 

  29. S. Lovell, B. J. Marquardt, B. Kahr Crystal Violet’s Shoulder J. Chem. Soc., Perkin Trans. 2 1999 2241

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo W. Laursen.

Additional information

Electronic supplementary information (ESI) available: Experimental details, Figs. S1–S5 and Tables S1–S6. See http://dx.doi.org/10.1039/b501584g

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laursen, B.W., Reynisson, J., Mikkelsen, K.V. et al. 2,6,10-Tris(dialkylamino)trioxatriangulenium salts: a new promising fluorophore. Ion-pair formation and aggregation in non-polar solvents. Photochem Photobiol Sci 4, 568–576 (2005). https://doi.org/10.1039/b501584g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b501584g

Navigation