Skip to main content

Short- and long-term effects of solar ultraviolet radiation on the red algae Porphyridium cruentum (S. F. Gray) Nägeli

Abstract

During spring 2002 and fall 2003 we carried out experiment in tropical southern China to determine the short- and long-term effects of solar ultraviolet radiation (UVR, 280–400 nm) on photosynthesis and growth in the unicellular red alga Porphyridium cruentum. During the experimentation, cells of P. cruentum were exposed to three radiation treatments: (a) samples exposed to PAR (400–700 nm) + UV-A (315–400 nm)+ UV-B (280–315 nm) (PAB treatment); (b) samples exposed to PAR + UV-A (PA treatment) and, (c) samples exposed only to PAR (P treatment). To assess the short-term impact of UVR as a function of irradiance, we determined photosynthesis versus irradiance (Pvs.E) curves. From these curves the maximum carbon uptake rate (Pmax) and the light saturation parameter (Ek) were obtained, with values of ~12.8–14.4 µg C (µg chl a)−1 h−1, and ~250 µmol m−2 s−1, respectively. A significant UVR effect on assimilation numbers was observed when samples were exposed at irradiances higher than Ek, with samples exposed to full solar radiation having significant less carbon fixation than those exposed only to PAR. Biological weighting functions of P. cruentum were used to evaluate the UVR impact per unit energy received by the cells; the data indicate that the species is as sensitive as natural phytoplankton from the southern China Sea; however, it is much more resistant than Antarctic assemblages. When evaluating the combined effects of mixing speed and UVR, it was seen that samples rotating fast within the upper mixed layer were less inhibited by UVR as compared to those under slow mixing or in fixed samples. Growth of P. cruentum over a week-long experiment was not affected by neither UVR nor UV-A; additionally, low photoinhibition was found at the end as compared to that at the beginning of this experiment. Our results thus indicate that, although on short-term basis P. cruentum is affected by solar UVR, it can acclimate to minimize UVR-induced effects when given enough time.

References

  1. V. E. Villafañe, K. Sunbäck, F. L. Figueroa and E. W. Helbling, in UV effects in aquatic organisms and ecosystems, ed. E. W. Helbling and H. E. Zagarese, Comprehensive Series in Photochemical and Photobiological Sciences, The Royal Society of Chemistry, Cambridge, 2003, vol. I, p. 357.

    Google Scholar 

  2. A. G. J. Buma, P. Boelen and W. H. Jeffrey, in UV effects in aquatic organisms and ecosystems, ed. E. W. Helbling and H. E. Zagarese, Comprehensive Series in Photochemical and Photobiological Sciences, The Royal Society of Chemistry, Cambridge, 2003, vol. I, p. 291.

    Google Scholar 

  3. E. W. Helbling, V. E. Villafañe, M. Ferrario, O. Holm-Hansen, Impact of natural ultraviolet radiation on rates of photosynthesis and on specific marine phytoplankton species, Mar. Ecol. Prog. Ser., 1992, 80, 89–100.

    Article  Google Scholar 

  4. E. S. Barbieri, V. E. Villafañe, and E. W. Helbling, Experimental assessment of UV effects upon temperate marine phytoplankton when exposed to variable radiation regimes, Limnol. Oceanogr., 2002, 47, 1648–1655.

    Article  Google Scholar 

  5. E. W. Helbling, K. Gao, R. J. Gonçalves, H. Wu, V. E. Villafañe, Utilization of solar ultraviolet radiation by phytoplankton assemblages from the Southern China Sea when exposed to fast mixing conditions, Mar. Ecol. Prog. Ser., 2003, 259, 59–66.

    CAS  Article  Google Scholar 

  6. M. J. Dring, A. Wagner, J. Boeskov, K. Lüning, Sensitivity of intertidal and subtidal red algae to UVA and UVB radiation, as monitored by chlorophyll fluorescence measurements: Influence of collection depth and season, and length of irradiation, Eur. J. Phycol., 1996, 31, 293–302.

    Article  Google Scholar 

  7. M. M. Rebolloso Fuentes, G. G. Acién Fernández, J. A. Sánchez Pérez, J. L. Gil Guerrero, Biomass nutrient profiles of the microalga Porphyridium cruentum, Food Chem., 2000, 70, 345–353.

    Article  Google Scholar 

  8. F. Camacho Rubio, F. G. Acién Fernández, J. A. Sánchez Pérez, F. García Camacho, E. Molina Grima, Prediction of dissolved oxygen and carbon dioxide concentrations profiles in tubular photobioreactors for microalgal culture, Biotechnol. Bioeng., 1988, 62, 71–86.

    Article  Google Scholar 

  9. M. M. Rebolloso Fuentes, J. L. García Sánchez, J. M. Fernández Sevilla, F. G. Acién Fernández, J. A. Sánchez Pérez, E. Molina Grima, Outdoor continuous culture of Porphyridium cruentum in a tubular photobioreactor: Quantitative analysis of the daily cyclic variation of culture parameters, J. Biotechnol., 1999, 70, 271–288.

    Article  Google Scholar 

  10. O. Montero, M. Klisch, D. P. Häder, and L. M. Lubian, Comparative sensitivity of seven marine microalgae to cumulative exposure to ultraviolet-B radiation with daily increasing doses, Bot. Mar., 2002, 45, 305–315.

    CAS  Article  Google Scholar 

  11. F. L. Figueroa, S. Salles, J. Aguilera, C. Jiménez, J. Mercado, B. Viñegla, A. Flores-Moya, and M. Altamirano, Effects of solar radiation on photoinhibition and pigmentation in the red alga Porphyra leucosticta, Mar. Ecol. Prog. Ser., 1997, 151, 81–90.

    CAS  Article  Google Scholar 

  12. O. Holm-Hansen and E. W. Helbling, in Manual de métodos ficológicos, ed. K. Alveal, M. E. Ferrario, E. C. Oliveira and E. Sar, Universidad de Concepción, Concepción, Chile, 1995, p. 329.

  13. R. Wellburn, The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution, J. Plant Physiol., 1994, 144, 307–313.

    CAS  Article  Google Scholar 

  14. W. C. Dunlap, G. A. Rae, E. W. Helbling, V. E. Villafañe, O. Holm-Hansen, UV-absorbing compounds in natural assemblages of Antarctic phytoplankton, Antarct. J. U. S., 1995, 30, 323–326.

    Google Scholar 

  15. V. E. Villafañe and F. M. H. Reid, in Manual de métodos ficológicos, ed. K. Alveal, M. E. Ferrario, E. C. Oliveira and E. Sar, Universidad de Concepción, Concepción, Chile, 1995, p. 169.

  16. P. H. C. Eilers, J. C. H. Peeters, A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton, Ecol. Model., 1988, 42, 199–215.

    Article  Google Scholar 

  17. J. H. Zar, Biostatistical analyses, Prentice Hall, Englewood Cliffs, NJ, 2nd edn., 1984.

    Google Scholar 

  18. P. J. Neale and D. J. Kieber, in Causes and environmental implications of increased UV-B radiation, ed. R. E. Hester and R. M. Harrison, Issues Environ. Sci. Technol. 14, The Royal Society of Chemistry, Cambridge, UK, 2000, p. 61.

    Google Scholar 

  19. A. Ruggaber, R. Dugli, and T. Nakajima, Modelling of radiation quantities and photolysis frequencies in the troposphere, J. Atmos. Chem., 1994, 18, 171–210.

    CAS  Article  Google Scholar 

  20. R. D. Rundel, Action spectra and estimation of biologically effective UV radiation, Physiol. Plant., 1983, 58, 360–366.

    Article  Google Scholar 

  21. A. T. Banaszak, in UV effects in aquatic organisms and ecosystems, ed. E. W. Helbling and H. E. Zagarese, Comprehensive Series in Photochemical and Photobiological Sciences, The Royal Society of Chemistry, Cambridge, 2003, vol. I, p. 329.

    Google Scholar 

  22. S. Madronich, in Environmental UV photobiology, ed. A. R. Young, L. O. Björn, J. Moan and W. Nultsch, Plenum Press, New York, 1993, p. 1.

  23. E. W. Helbling, V. E. Villafañe, A. G. J. Buma, M. Andrade, and F. Zaratti, DNA damage and photosynthetic inhibition induced by solar UVR in tropical phytoplankton (Lake Titicaca, Bolivia), Eur. J. Phycol., 2001, 36, 157–166.

    Article  Google Scholar 

  24. M. Blumthaler, and W. Rewald, Solar UV-A and UV-B fluxes at two alpine stations at different altitudes, Theor. Appl. Climatol., 1992, 46, 39–44.

    Article  Google Scholar 

  25. E. Sakshaug, A. Bricaud, Y. Dandonneau, P. G. Falkowski, D. A. Kiefer, L. Legendre, A. Morel, J. Parslow, and M. Takahashi, Parameters of photosynthesis: Definitions, theory and interpretation of results, J. Plankton Res., 1997, 19, 1637–1670.

    CAS  Article  Google Scholar 

  26. J. A. Furgal, R. E. H. Smith, Ultraviolet radiation and photosynthesis by Georgian Bay phytoplankton of varying nutrient and photoadaptive status, Can. J. Fish. Aquat. Sci., 1997, 54, 1659–1667.

    Article  Google Scholar 

  27. V. Montecino, and G. Pizarro, Phytoplankton acclimation and spectral penetration of UV irradiance off the central Chilean coast, Mar. Ecol, Prog. Ser., 1995, 121, 261–269.

    Article  Google Scholar 

  28. V. E. Villafañe, M. A. Marcoval, and E. W. Helbling, Photosynthesis vs. irradiance characteristics in phytoplankton assemblages off Patagonia (Argentina): Temporal variability and solar UVR effects, Mar. Ecol. Prog. Ser., 2004, 284, 23–34.

    Article  Google Scholar 

  29. R. C. Smith, B. B. Prézelin, K. S. Baker, R. R. Bidigare, N. P. Boucher, T. L. Coley, D. Karentz, S. MacIntyre, H. A. Matlick, D. Menzies, M. Ondrusek, Z. Man, and K. J. Waters, Ozone depletion: Ultraviolet radiation and phytoplankton biology in Antarctic waters, Science, 1992, 255, 952–959.

    CAS  PubMed  Article  Google Scholar 

  30. P. J. Neale, R. F. Davis, and J. J. Cullen, Interactive effects of ozone depletion and vertical mixing on photosynthesis of Antarctic phytoplankton, Nature, 1998, 392, 585–589.

    CAS  Article  Google Scholar 

  31. P. Boelen, A. F. Post, M. J. W. Veldhuis, A. G. J. Buma, Diel patterns of UVBR-induced DNA damage in picoplankton size fractions from the Gulf of Aqaba, Red Sea, Microb. Ecol., 2002, 44, 164–174.

    CAS  PubMed  Article  Google Scholar 

  32. M. P. Lesser, Acclimation of phytoplankton to UV-B radiation: Oxidative stress and photoinhibition of photosynthesis are not prevented by UV-absorbing compounds in the dinoflagellate Prorocentrum micans, Mar. Ecol. Prog. Ser., 1996, 132, 287–297.

    CAS  Article  Google Scholar 

  33. M. P. Lesser, P. J. Neale, and J. J. Cullen, Acclimation of Antarctic phytoplankton to ultraviolet radiation: Ultraviolet-absorbing compounds and carbon fixation, Mol. Mar. Biol. Biotechnol., 1996, 5, 314–325.

    CAS  Google Scholar 

  34. E. Litchman, P. J. Neale, and A. T. Banaszak, Increased sensitivity to ultraviolet radiation in nitrogen-limited dinoflagellates, Limnol. Oceanogr., 2002, 47, 86–94.

    CAS  Article  Google Scholar 

  35. E. W. Helbling, V. E. Villafañe and O. Holm-Hansen, in Ultraviolet radiation in Antarctica: Measurements and biological effects, ed. C. S. Weiler and P. Penhale, Antarctic Res. Ser. 62, American Geophysical Union, Washington, DC, 1994, p. 207.

    Google Scholar 

  36. B. R. Hargreaves, in UV effects in aquatic organisms and ecosystems, ed. E. W. Helbling and H. E. Zagarese, Comprehensive Series in Photochemical and Photobiological Sciences. vol. I, The Royal Society of Chemistry, Cambridge, 2003, p. 59.

    Google Scholar 

  37. A. G. J. Buma, E. W. Helbling, M. K. de Boer, V. E. Villafañe, DNA damage patterns in temperate South-Atlantic picophytoplankton assemblages exposed to solar ultraviolet radiation, J. Photochem. Photobiol. B: Biol., 2001, 62, 9–18.

    CAS  Article  Google Scholar 

  38. W. Helbling, B. E. Chalker, W. C. Dunlap, O. Holm-Hansen, V. E. Villafañe, Photoacclimation of Antarctic marine diatoms to solar ultraviolet radiation, J. Exp. Mar. Biol. Ecol., 1996, 204, 85–101.

    Article  Google Scholar 

  39. A. Mostajir, T. Sime-Ngando, S. Demers, C. Belzile, S. Roy, M. Gosselin, J. P. Chanut, S. De Mora, J. Fauchot, F. Vidussi, and M. Levasseur, Ecological implications of changes in cell size and photosynthetic capacity of marine Prymnesiophyceae induced by ultraviolet-B radiation, Mar. Ecol. Prog. Ser., 1999, 187, 89–100.

    Article  Google Scholar 

  40. L. Zudaire, and S. Roy, Photoprotection and long-term acclimation to UV radiation in the marine diatom Thalassiosira weissflogii, J. Photochem. Photobiol. B: Biol., 2001, 62, 26–34.

    CAS  Article  Google Scholar 

  41. E. Aguirre-von-Wobeser, F. L. Figueroa, A. Cabello-Pasini, Effect of UV radiation on photoinhibition of marine macrophytes in culture systems, J. Appl. Phycol., 2000, 12, 159–168.

    CAS  Article  Google Scholar 

  42. E. W. Helbling, E. S. Barbieri, R. P. Sinha, V. E. Villafañe, D. P. Häder, Dynamics of potentially protective compounds in Rhodophyta species from Patagonia (Argentina) exposed to solar radiation, J. Photochem. Photobiol. B: Biol., 2004, 75, 63–71.

    CAS  Article  Google Scholar 

  43. O. Holm-Hansen, D. Lubin, and E. W. Helbling, Ultraviolet radiation in Antarctica: Inhibition of primary production, Photochem. Photobiol., 1993, 58, 567–570.

    CAS  Article  Google Scholar 

  44. S. Kim, and Y. Watanabe, Inhibition of growth and photosynthesis of freshwater phytoplankton by ultraviolet A (UVA) radiation and subsequent recovery from stress, J. Plankton Res., 1994, 16, 1645–1654.

    Article  Google Scholar 

  45. E. W. Helbling, A. G. J. Buma, M. K. de Boer, V. E. Villafañe, In situ impact of solar ultraviolet radiation on photosynthesis and DNA in temperate marine phytoplankton, Mar. Ecol. Prog. Ser., 2001, 211, 43–49.

    CAS  Article  Google Scholar 

  46. F. Garcia-Pichel, A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens, Limnol. Oceanogr., 1994, 39, 1704–1717.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia E. Villafañe.

Additional information

Permanent address: Estación de Fotobiología Playa Unión, Rifleros 227, Playa Unión (9103)Rawson, Chubut, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Villafañe, V.E., Gao, K. & Helbling, E.W. Short- and long-term effects of solar ultraviolet radiation on the red algae Porphyridium cruentum (S. F. Gray) Nägeli. Photochem Photobiol Sci 4, 376–382 (2005). https://doi.org/10.1039/b418938h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b418938h