Skip to main content
Log in

Excited-state dynamics of the fluorescent probe Lucifer Yellow in liquid solutions and in heterogeneous media

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photophysics of the dye Lucifer Yellow ethylenediamine (LYen) has been investigated in various polar solvents. The main deactivation pathways of its first singlet excited state are the fluorescence and the intersystem crossing. In water, non-radiative decay by intermolecular proton transfer becomes a significant deactivation channel. The early fluorescence dynamics, which was investigated in liquids and in reverse micelles, was found to depend substantially on the environment. An important static quenching of LYen by tryptophan and indole occurring in the subpicosecond timescale was observed. The use of the fluorescence dynamics of LYen as a local probe is illustrated by preliminary results obtained with a biotinylated Lucifer Yellow derivative complexed with avidin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AOT:

dioctyl sulfosuccinate sodium salt (aerosol OT)

DMF:

N,N-dimethylformamide

DMSO:

dimethylsulfoxide

ESPT:

excited-state proton transfer

ET:

electron transfer

FWHM:

full width at half maximum

Ind:

indole

ISC:

intersystem crossing

LYbtn:

Lucifer Yellow biocytin potassium salt (biocytin: e-N-(D-biotinyl)-Llysine)

LYen:

Lucifer Yellow ethylenediamine dipotassium salt (N-(2-aminoethyl)-4-amino-3,6-disulfo-1,8-naphthalimide dipotassium salt)

R6G:

rhodamine 6G

TCSPC:

time-correlated single photon counting

Trp:

L-tryptophan

References

  1. W. W. Stewart, Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer, Cell, 1978, 14, 741–759.

    Article  CAS  PubMed  Google Scholar 

  2. W. W. Stewart, Lucifer dyes. Highly fluorescent dyes for biological tracing, Nature, 1981, 292, 17–21.

    Article  CAS  PubMed  Google Scholar 

  3. P. Godement, J. Vanselow, S. Thanos and F. Bonhoeffer, A study in developing visual systems with a new method of staining neurones and their processes in fixed tissue, Development, 1987, 101, 697–713.

    Article  CAS  PubMed  Google Scholar 

  4. N. Miro-Bernie, F. J. Sancho-Bielsa, C. Lopez-Garcia, J. Perez-Clausell, Retrograde transport of sodium selenite and intracellular injection of micro-ruby: A combined method to describe the morphology of zinc-rich neurons, J. Neurosci. Methods, 2003, 127, 199–209.

    Article  CAS  PubMed  Google Scholar 

  5. J. F. Staiger, C. Masanneck, S. Bisler, A. Schleicher, W. Zuschratter and K. Zilles, Excitatory and inhibitory neurons express c-fos in barrel-related columns after exploration of a novel environment, Neuroscience, 2002, 109, 687–699.

    Article  CAS  PubMed  Google Scholar 

  6. C. Peracchia, Direct communication between axons and sheath glial cells in crayfish, Nature, 1981, 290, 597–598.

    Article  CAS  PubMed  Google Scholar 

  7. J. E. Contreras, H. A. Sanchez, E. A. Eugenin, D. Speidel, M. Theis, K. Willecke, F. F. Bukauskas, M. V. L. Bennett and J. C. Saez, Metabolic inhibition induces opening of unapposed connexin 43 gap junction hemichannels and reduces gap junctional communication in cortical astrocytes in culture, Proc. Natl. Acad. Sci. USA, 2002, 99, 495–500.

    Article  CAS  PubMed  Google Scholar 

  8. W. J. Brown, J. Goodhouse and M. G. Farquhar, Mannose-6-phosphate receptors for lysosomal enzymes cycle between the golgi complex and endosomes, J. Cell Biol., 1986, 103, 1235–1247.

    Article  CAS  PubMed  Google Scholar 

  9. G. Drin, S. Cottin, E. Blanc, A. R. Rees and J. Temsamani, Studies on the internalization mechanism of cationic cell-penetrating peptides, J. Biol. Chem., 2003, 278, 31192–31201.

    Article  CAS  PubMed  Google Scholar 

  10. M. D. Taylor, J. R. Roberts, A. F. Hubbs, M. J. Reasor and J. M. Antonini, Quantitative image analysis of drug-induced lung fibrosis using laser scanning confocal microscopy, Toxicol. Sci., 2002, 67, 295–302.

    Article  CAS  PubMed  Google Scholar 

  11. J. M. Antonini, D. R. Hemenway and G. S. Davis, Quantitative image analysis of lung connective tissue in murine silicosis, Exp. Lung Res., 2000, 26, 71–88.

    Article  CAS  PubMed  Google Scholar 

  12. K. Yoneyama, Three-dimensional visualization and physiologic evaluation of bile canaliculi in the rat liver slice by confocal laser scanning microscopy, Scanning, 2001, 23, 359–365.

    Article  CAS  PubMed  Google Scholar 

  13. M. Rocha and M. Sur, Rapid acquisition of dendritic spines by visual thalamic neurons after blockade of N-methyl-d-aspartate receptors, Proc. Natl. Acad. Sci. USA, 1995, 92, 8026–8030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M. J. Cabirol-Pol, A. Mizrahi, J. Simmers and P. Meyrand, Combining laser scanning confocal microscopy and electron microscopy to determine sites of synaptic contact between two identified neurons, J. Neurosci. Methods, 2000, 97, 175–181.

    Article  CAS  PubMed  Google Scholar 

  15. A. Sommer, R. Gorges, G. M. Kostner, F. Paltauf and A. Hermetter, Sulfhydryl-selective fluorescence labeling of lipoprotein(a) reveals evidence for one single disulfide linkage between apoproteins(a) and B-100, Biochemistry, 1991, 30, 11245–11249.

    Article  CAS  PubMed  Google Scholar 

  16. J. R. Archer, S. S. Badakere, M. G. Macey and M. A. Whelan, Use of lucifer yellow iodoacetamide in a flow cytometric assay to measure cell surface free thiol, Biochem. Soc. Trans., 1995, 23, 38.

    Article  Google Scholar 

  17. J. P. Sumida, E. L. Forsythe and M. L. Pusey, Preparation and preliminary characterization of crystallizing fluorescent derivatives of chicken egg white lysozyme, J. Cryst. Growth, 2001, 232, 308–316.

    Article  CAS  Google Scholar 

  18. C. Kempf, M. R. Michel, U. Kohler and H. Koblet, A novel method for the detection of early events in cell-cell fusion of semliki forest virus infected cells growing in monolayer cultures, Arch. Virol., 1987, 95, 283–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. B. C. Suh, S. K. Song, Y. K. Kim and K. T. Kim, Induction of cytosolic Ca2+ elevation mediated by Mas-7 occurs through membrane pore formation, J. Biol. Chem., 1996, 271, 32753–32759.

    Article  CAS  PubMed  Google Scholar 

  20. E. Picello, P. Pizzo, F. Di Virgilio, Chelation of cytoplasmic calcium increases plasma membrane permeability in murine macrophages, J. Biol. Chem., 1990, 265, 5635–5639.

    Article  CAS  PubMed  Google Scholar 

  21. A. Pardo, E. Martin, J. M. L. Poyato, J. J. Camacho, M. F. Brana and J. M. Castellano, Synthesis and photophysical properties of some N-substituted-1,8-naphthalimides, J. Photochem. Photobiol. A, 1987, 41, 69–78.

    Article  CAS  Google Scholar 

  22. P. Berci Filho, V. G. Toscano and M. J. Politi, Solvent-induced changes in the photophysical properties of N-alkylphthalimides, J. Photochem. Photobiol. A, 1988, 43, 51–58.

    Article  Google Scholar 

  23. A. Samanta, B. Ramachandram and G. Saroja, An investigation of the triplet state properties of 1,8-naphthalimide: A laser flash photolysis study, J. Photochem. Photobiol. A, 1996, 101, 29–32.

    Article  CAS  Google Scholar 

  24. P. Nemes, A. Demeter, L. Biczok, T. Berces, V. Wintgens, P. Valat and J. Kossanyi, Spectroscopic properties of aromatic dicarboximides part 4: N-alkyl- and N-cycloalkyl-substituted 1,2-naphthalimides, J. Photochem. Photobiol. A, 1998, 113, 225–231.

    Article  CAS  Google Scholar 

  25. D. Yuan and R. G. Brown, Enhanced nonradiative decay in aqueous solutions of aminonaphthalimide derivatives via water-cluster formation, J. Phys. Chem. A, 1997, 101, 3461–3466.

    Article  CAS  Google Scholar 

  26. A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher and T. E. Rice, Signaling recognition events with fluorescent sensors and switches, Chem. Rev., 1997, 97, 1515–1566.

    Article  PubMed  Google Scholar 

  27. S. Saha and A. Samanta, Influence of the structure of the amino group and polarity of the medium on the photophysical behavior of 4-amino-1,8-naphthalimide derivatives, J. Phys. Chem. A, 2002, 106, 4763–4771.

    Article  CAS  Google Scholar 

  28. Y. Q. Gao and R. A. Marcus, Theoretical investigation of the directional electron transfer in 4-aminonaphthalimide compounds, J. Phys. Chem. A, 2002, 106, 1956–1960.

    Article  CAS  Google Scholar 

  29. J. A. Lee and P. A. G. Fortes, Labeling of the glycoprotein subunit of sodium-potassium atpase with fluorescent probes, Biochemistry, 1985, 24, 322–330.

    Article  CAS  PubMed  Google Scholar 

  30. M. Sinev, P. Landsmann, E. Sineva, V. Ittah and E. Haas, Design consideration and probes for fluorescence resonance energy transfer studies, Bioconjugate Chem., 2000, 11, 352–362.

    Article  CAS  Google Scholar 

  31. S. A. Kovalenko, R. Schanz, H. Hennig and N. P. Ernsting, Cooling dynamics of an optically excited molecular probe in solution from femtosecond broadband transient absorption spectroscopy, J. Chem. Phys., 2001, 115, 3256–3273.

    Article  CAS  Google Scholar 

  32. D. Schwarzer, J. Troe and M. Zerezke, The role of local density in the collisional deactivation of vibrationally highly excited azulene in supercritical fluids, J. Chem. Phys., 1997, 107, 8380–8390.

    Article  CAS  Google Scholar 

  33. A. Pigliucci and E. Vauthey, Vibrational relaxation dynamics of polyatomic molecules in solution, Chimia, 2003, 57, 200–203.

    Article  CAS  Google Scholar 

  34. M. L. Horng, J. A. Gardecki, A. Papazyan and M. Maroncelli, Subpicosecond measurements of polar solvation dynamics: Coumarin 153 revisited, J. Phys. Chem., 1995, 99, 17311–17337.

    Article  CAS  Google Scholar 

  35. S. J. Rosenthal, X. Xie, M. Du and G. R. Fleming, Femtosecond solvation dynamics in acetonitrile: Observation of the inertial contribution to the solvent response, J. Chem. Phys., 1991, 95, 4715–4718.

    Article  CAS  Google Scholar 

  36. E. Vauthey, Picosecond transient grating study of the reorientation dynamics of nile red in different classes of solvent, Chem. Phys. Lett., 1993, 216, 530–536.

    Article  CAS  Google Scholar 

  37. A. M. Williams, Y. Jiang, D. Ben-Amotz, Molecular reorientation dynamics and microscopic friction in liquids, Chem. Phys., 1994, 180, 119–129.

    Article  CAS  Google Scholar 

  38. M. P. Pileni, Reverse micelles as microreactors, J. Phys. Chem., 1993, 97, 6961–6973.

    Article  CAS  Google Scholar 

  39. M. Fischer and J. Georges, Use of thermal lens spectrometry for the investigation of dimerization equilibria of rhodamine 6g in water and aqueous micellar solutions, Spectrochim. Acta, Part A, 1997, 53A, 1419–1430.

    Article  CAS  Google Scholar 

  40. A. Morandeira, L. Engeli and E. Vauthey, Ultrafast charge recombination of photogenerated ion pairs to an electronic excited state, J. Phys. Chem. A, 2002, 106, 4833–4837.

    Article  CAS  Google Scholar 

  41. S. Pagès, B. Lang and E. Vauthey, Ultrafast spectroscopic investigation of the charge recombination dynamics of ion pairs formed upon highly exergonic bimolecular electron-transfer quenching: Looking for the normal region, J. Phys. Chem. A, 2004, 108, 549–555.

    Article  CAS  Google Scholar 

  42. P. Suppan, Solvatochromic shifts: The influence of the medium on the energy of electronic states, J. Photochem. Photobiol. A, 1990, 50, 293–330.

    Article  CAS  Google Scholar 

  43. A. Kapturkiewicz, J. Herbich, J. Karpiuk and J. Nowacki, Intramolecular radiative and radiationless charge recombination processes in donor-acceptor carbazole derivatives, J. Phys. Chem. A, 1997, 101, 2332–2344.

    Article  CAS  Google Scholar 

  44. S. J. Strickler and R. A. Berg, Relationship between absorption intensity and fluorescence lifetime of molecules, J. Chem. Phys., 1962, 37, 814–822.

    Article  CAS  Google Scholar 

  45. B. Cohen and D. Huppert, Excited state proton-transfer reactions of coumarin 4 in protic solvents, J. Phys. Chem. A, 2001, 105, 7157–7164.

    Article  CAS  Google Scholar 

  46. N. Agmon, Elementary steps in excited-state proton transfer, J. Phys. Chem. A, 2005, 109, 13–35.

    Article  CAS  PubMed  Google Scholar 

  47. H. T. Yu, W. J. Colucci, M. L. McLaughlin and M. D. Barkley, Fluorescence quenching in indoles by excited-state proton transfer, J. Am. Chem. Soc., 1992, 114, 8449–8454.

    Article  CAS  Google Scholar 

  48. S. Das, A. Datta and K. Bhattacharyya, Deuterium isotope effect on 4-aminophthalimide in neat water and reverse micelles, J. Phys. Chem. A, 1997, 101, 3299–3304.

    Article  CAS  Google Scholar 

  49. R. Jimenez, G. R. Fleming, P. V. Kumar and M. Maroncelli, Femtosecond solvation dynamics of water, Nature, 1994, 369, 471–473.

    Article  CAS  Google Scholar 

  50. S. K. Pal, J. Peon, B. Bagchi and A. H. Zewail, Biological water: Femtosecond dynamics of macromolecular hydration, J. Phys. Chem. B, 2002, 106, 12376–12395.

    Article  CAS  Google Scholar 

  51. G. Onori and A. Santucci, IR investigations of water structure in aerosol OT reverse micellar aggregates, J. Phys. Chem., 1993, 97, 5430–5434.

    Article  CAS  Google Scholar 

  52. D. J. Christopher, J. Yarwood, P. S. Belton and B. P. Hills, A fourier transform infrared study of water-head group interactions in reversed micelles containing sodium bis(2-ethylhexyl) sulfosuccinate (AOT), J. Colloid Interface Sci., 1992, 152, 465–472.

    Article  CAS  Google Scholar 

  53. H. Hauser, G. Haering, A. Pande and P. L. Luisi, Interaction of water with sodium bis(2-ethyl-1-hexyl) sulfosuccinate in reversed micelles, J. Phys. Chem., 1989, 93, 7869–7876.

    Article  CAS  Google Scholar 

  54. R. E. Riter, E. P. Undiks and N. E. Levinger, Impact of counterion on water motion in aerosol OT reverse micelles, J. Am. Chem. Soc., 1998, 120, 6062–6067.

    Article  CAS  Google Scholar 

  55. M. Hasegawa, T. Sugimura, Y. Suzaki, Y. Shindo and A. Kitahara, Microviscosity in water pool of aerosol-OT reversed micelle determined with viscosity-sensitive fluorescence probe, auramine O and fluorescence depolarization of xanthene dyes, J. Phys. Chem., 1994, 98, 2120–2124.

    Article  CAS  Google Scholar 

  56. S. K. Pal and A. H. Zewail, Dynamics of water in biological recognition, Chem. Rev., 2004, 104, 2099–2123.

    Article  CAS  PubMed  Google Scholar 

  57. G. Jones II, L. N. Lu, V. Vullev, D. J. Gosztola, S. R. Greenfield and M. R. Wasielewski, Photoinduced electron transfer for pyrenesulfonamide conjugates of tryptophan-containing peptides. Mitigation of fluoroprobe behavior in N-terminal labeling experiments, Bioorg. Med. Chem. Lett., 1995, 5, 2385–2390.

    Article  CAS  Google Scholar 

  58. A. C. Vaiana, H. Neuweiler, A. Schulz, J. Wolfrum, M. Sauer and J. C. Smith, Fluorescence quenching of dyes by tryptophan: Interactions at atomic detail from combination of experiment and computer simulation, J. Am. Chem. Soc., 2003, 125, 14564–14572.

    Article  CAS  PubMed  Google Scholar 

  59. A. Harriman, Further comments on the redox potentials of tryptophan and tyrosine, J. Phys. Chem., 1987, 91, 6102–6104.

    Article  CAS  Google Scholar 

  60. S. L. Murov, I. Carmichael and G. L. Hug, Handbook of photochemistry, Marcel Dekker, New York, 1993.

    Google Scholar 

  61. C. A. M. Seidel, A. Schulz and M. H. M. Sauer, Nucleobase-specific quenching of fluorescent dyes. 1. Nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies, J. Phys. Chem., 1996, 100, 5541–5553.

    Article  CAS  Google Scholar 

  62. F. D. Lewis, R. L. Letsinger and M. R. Wasielewski, Dynamics of photoinduced charge transfer and hole transport in synthetic DNA hairpins, Acc. Chem. Res., 2001, 34, 159–170.

    Article  CAS  PubMed  Google Scholar 

  63. G. Merenyi, J. Lind and X. Shen, Electron transfer from indoles, phenol and sulfite (SO32−) to chlorine dioxide (ClO2), J. Phys. Chem., 1988, 92, 134–137.

    Article  CAS  Google Scholar 

  64. N. Marmé, J.-P. Knemeyer, M. Sauer and J. Wolfrum, Inter- and intramolecular fluorescence quenching of organic dyes by tryptophan, Bioconjugate Chem., 2003, 14, 1133–1139.

    Article  CAS  Google Scholar 

  65. D. Zhong and A. H. Zewail, Femtosecond dynamics of flavoproteins: Charge separation and recombination in riboflavin (vitamin B2)-binding protein and in glucose oxidase enzyme, Proc. Natl. Acad. Sci. USA, 2001, 98, 11867–11872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. J. E. Rogers and L. A. Kelly, Nucleic acid oxidation mediated by naphthalene and benzophenone imide and diimide derivatives: Consequences for DNA redox chemistry, J. Am. Chem. Soc., 1999, 121, 3854–3861.

    Article  CAS  Google Scholar 

  67. J. E. Rogers, S. J. Weiss and L. A. Kelly, Photoprocesses of naphthalene imide and diimide derivatives in aqueous solutions of DNA, J. Am. Chem. Soc., 2000, 122, 427–436.

    Article  CAS  Google Scholar 

  68. I. A. Shkrob, M. C. Sauer, Jr. A. D. Liu, R. A. Crowell and A. D. Trifunac, Reactions of photoexcited aromatic radical cations with polar solvents, J. Phys. Chem. A, 1998, 102, 4976–4989.

    Article  CAS  Google Scholar 

  69. Avidin-biotin technology, in Methods in Enzymology, ed. M. Wilchek and E. A. Bayer, Academic Press, San Diego, 1990, vol. 184, p. 746.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Vauthey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fürstenberg, A., Vauthey, E. Excited-state dynamics of the fluorescent probe Lucifer Yellow in liquid solutions and in heterogeneous media. Photochem Photobiol Sci 4, 260–267 (2005). https://doi.org/10.1039/b418188c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b418188c

Navigation