Skip to main content
Log in

Structural daily rhythms in GFP-labelled neurons in the visual system of Drosophila melanogaster

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In the visual system of Drosophila melanogaster, two classes of interneurons in the first optic neuropil, or lamina, the monopolar cells L1 and L2, show rhythmic circadian changes in the shape and size of their axons. In the present study we have used the GAL4-UAS system to target the GFP expression to the L2 cells in D. melanogaster and to examine morphological changes in the cell body, nucleus, axon and dendritic spines. Our results showed that in addition to changes in the caliber of its axon, L2 also shows daily changes in the morphology of its dendritic spines, differences which are most pronounced at the beginning of the night. There are also changes in the sizes of the cells’ nuclei in the lamina cortex, which are largest at the beginning and in the middle of day, in females and males, respectively. In contrast to the axon and dendrites, L2’s soma does not change size significantly during the day or night. The observed changes clearly indicate the cyclical modulation of the structure of the L2 interneurons. These changes seem to be regulated by a circadian clock, which exhibits certain differences between the sexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. B. Barlow, J. M. Hitt and F. A. Dodge, Limulus vision in the marine environment, Biol. Bull., 2001, 200, 169–176.

    Article  CAS  Google Scholar 

  2. M. E. Guido, A. R. Carpentieri, E. Garbarino-Pico, Circadian phototransduction and the regulation of biological rhythms, Neurochem. Res., 2002, 27, 1473–1489.

    Article  CAS  Google Scholar 

  3. E. Pyza, Cellular circadian rhythms, in Insect Timing: Circadian Rhythmicity to Seasonality, ed. D. L. Denlinger, J. M. Giebultowicz, and D. S. Saunders, Elsevier Science, Amsterdam, 2001, pp. 55–68.

    Chapter  Google Scholar 

  4. E. Pyza and I. A. Meinertzhagen, Monopolar cell axons in the first optic neuropil of the housefly, Musca domestica L., undergo daily fluctuations in diameter that have a circadian basis, J. Neurosci., 1995, 15, 407–418.

    Article  CAS  Google Scholar 

  5. E. Pyza and I. A. Meinertzhagen, Daily and rhythmic changes of cell size and shape in the first optic neuropile in Drosophila melanogaster, J. Neurobiol., 1999, 40, 77–88.

    Article  CAS  Google Scholar 

  6. E. Pyza and B. Cymborowski, Circadian rhythms in behaviour and in the visual system of the blow fly Calliphora vicina, J. Insect Physiol., 2001, 47, 897–904.

    Article  CAS  Google Scholar 

  7. E. Pyza and I. A. Meinertzhagen, Day/night size changes in lamina cells are influenced by the period gene in Drosophila, Soc. Neurosci. Abstr., 1995, 21, 408.

    Google Scholar 

  8. E. Pyza and I. A. Meinertzhagen, Neurotransmitters regulate rhythmic size changes amongst cells in the fly’s optic lobe, J. Comp. Physiol. A, 1996, 178, 33–45.

    Article  CAS  Google Scholar 

  9. U. D. Behrens, P. Kasten and H. J. Wagner, Adaptation-dependent plasticity of rod bipolar cell axon terminal morphology in the rat retina, Cell Tissue Res., 1998, 294, 243–251.

    Article  CAS  Google Scholar 

  10. M. Goldin, M. Segal and E. Avignone, Functional plasticity triggers formation and pruning of dendritic spines in cultured hippocampal networks, J. Neurosci., 2001, 21, 186–193.

    Article  CAS  Google Scholar 

  11. Y. Pipel and M. Segal, Activation of PKC induces rapid morphological plasticity in dendrites of hippocampal neurons via Rac and Rho-dependent mechanisms, Eur. J. Neurosci., 2004, 19, 3151–3164.

    Article  Google Scholar 

  12. I. A. Meinertzhagen and K. E. Sorra, Synaptic organization in the fly’s optic lamina: few cells, many synapses and divergent microcircuits, in Progress in Brain Research, ed. H. Kolb, H. Ripps and S. Wu, Elsevier Sciences B.V., 2001, pp. 53–69.

    Google Scholar 

  13. J. Lippincott-Schwartz and G. H. Patterson, Development and use of fluorescent protein markers in living cells, Science, 2003, 300, 87–91.

    Article  CAS  Google Scholar 

  14. T. Raabe, unpublished results.

  15. R. Heim, D. C. Prasher, R. Y. Tsien RY, Wavelength mutations and posttranslational autoxidation of green fluorescent protein, Proc. Natl. Acad. Sci. USA, 1994, 91, 12501–12504.

    Article  CAS  Google Scholar 

  16. R. Rizzuto, M. Brini, F. De Giorgi, R. Rossi, R. Heim, R. Y. Tsien and T. Pozzan, Double labelling of subcellular structures with organelle-targeted GFP mutants in vivo, Curr. Biol., 1996, 6, 183–188.

    Article  CAS  Google Scholar 

  17. T. Lee and L. Luo, Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis, Neuron, 1999, 22, 451–461.

    Article  CAS  Google Scholar 

  18. V. Braitenberg, Patterns of projection in the visual system of the fly. I. Retina-lamina projections, Exp. Brain Res., 1967, 3, 271–298.

    Article  CAS  Google Scholar 

  19. O. Trujillo-Cenóz, Some aspects of the structural organization of the intermediate retina of dipterans, J. Ultrastruct. Res., 1965, 13, 1–33.

    Article  Google Scholar 

  20. K. F. Fischbach, A. P. M. Dittrich, The optic lobe of Drosophila melanogaster I. A Golgi analysis of wild-type structure, Cell Tissue Res., 1989, 258, 441–475.

    Article  Google Scholar 

  21. N. J. Strausfeld and I. A. Meinertzhagen, The insect neuron: types, morphologies, fine structure, and relationship to the architectonics of the insect nervous system, in Microscopic Anatomy of Invertebrates, 1998, Wiley-Liss, Inc., vol. 11B: Insecta, pp. 487–538.

    Google Scholar 

  22. W. Engelmann and J. Mack, Different oscillators control the circadian rhythm of eclosion and activity in Drosophila, J. Comp. Physiol. A, 1978, 127, 229–237.

    Article  Google Scholar 

  23. B. Grima, E. Chélot, R. Xia and F. Rouyer, Morning and evening activity peaks are controlled by different clock neurons of the Drosophila brain, Nature, 2004, 431, 869–873.

    Article  CAS  Google Scholar 

  24. E. Pyza and I. A. Meinertzhagen, The role of clock genes and glial cells in expressing circadian rhythms in the fly’s lamina, in Abstracts of papers presented at the 1999 meeting on Neurobiology of Drosophila, Cold Spring Harbor Laboratory, 1999, p. 145.

    Google Scholar 

  25. E. Pyza, J. Górska-Andrzejak, Involvement of glial cells in rhythmic size changes in neurons of the housefly’s visual system, J. Neurobiol., 2004, 59, 205–215.

    Article  Google Scholar 

  26. E. Kula and E. Pyza, Protein synthesis is involved in size changes of neurons in the first optic neuropil of Musca domestica L., in Abstracts of the Central European Conference of Neurobiology, Kraków, Poland, 2001, p. 52.

    Google Scholar 

  27. E. Pyza and I. A. Meinertzhagen, Daily and circadian rhythms of synaptic frequency in the first visual neuropile of the housefly’s (Musca domestica L.) optic lobe, Proc. Royal Soc. London, B, 1993, 254, 97–105.

    Article  CAS  Google Scholar 

  28. W. Burkhardt and V. Braitenberg, Some peculiar synaptic complexes in the first visual ganglion of the fly Musca domestica, Cell Tissue Res., 1976, 173, 287–308.

    Article  CAS  Google Scholar 

  29. D. Nicol and I. A. Meinertzhagen, An analysis of the number and composition of the synaptic populations formed by photoreceptors of the fly, J. Comp. Neurol., 1982, 207, 29–44.

    Article  CAS  Google Scholar 

  30. I. A. Meinertzhagen and X. Hu, Evidence for site selection during synaptogenesis: the surface distribution of synaptic sites in photoreceptor terminals of the flies Musca and Drosophila, Cell Mol. Neurobiol., 1996, 16, 677–697.

    Article  CAS  Google Scholar 

  31. G. S. Marrs, S. H. Green and M. E. Dailey, Rapid formation and remodeling of postsynaptic densities in developing dendrites, Nat. Neurosci., 2001, 4, 1006–1013.

    Article  CAS  Google Scholar 

  32. B. Leuner, J. Falduto and T. J. Shors, Associative memory formation increases the observation of dendritic spines in the hippocampus, J. Neurosci., 2003, 23, 659–665.

    Article  CAS  Google Scholar 

  33. S. Sato, S. B. Burgess and D. L. McIlwain, Transcription and motoneuron size, J. Neurochem., 1994, 63, 1609–1615.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Pyza.

Additional information

Presented at the 14th International Congress on Photobiology, at Jungmoon, Jeju Island, South Korea, 10th-15th June 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Górska-Andrzejak, J., Keller, A., Raabe, T. et al. Structural daily rhythms in GFP-labelled neurons in the visual system of Drosophila melanogaster. Photochem Photobiol Sci 4, 721–726 (2005). https://doi.org/10.1039/b417023g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b417023g

Navigation