Skip to main content
Log in

Photothermal sensitisation: evidence for the lack of oxygen effect on the photosensitising activity

  • Communication
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Irradiation of amelanotic melanoma B78H1 cells in the presence of liposome-delivered Ni(ii)-octabutoxy-naphthalocyanine with a Q-switched Ti:sapphire laser operated in a pulsed mode (850 nm, 30 ns pulses, 10 Hz, 120 mJ pulse−1) promotes a photothermal sensitization process leading to extensive cell inactivation. The photoprocess occurs with identical efficiency in N2-saturated and air-equilibrated media, indicating that this photosensitization modality does not require the presence of oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. R. R. Andersson and J. A. Parrish, Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation, Science, 1983, 220, 524–527.

    Article  Google Scholar 

  2. R. R. Andersson and J. A. Parrish, Selective effects with pulsed irradiation from laser: from organ to organelle, J. Invest. Dermatol., 1983, 80, 75–80.

    Article  Google Scholar 

  3. R. R. Anderson, R. J. Margolis, S. Watenabe, T. Flotta, G. J. Hruza and J. S. Dovar, Selective photothermolysis of cutaneous pigmentation by Q-switched Nd:YAG laser pulsed at 1064, 532 and 355 nm, J. Invest. Dermatol., 1989, 93, 28–32.

    Article  CAS  Google Scholar 

  4. J. S. Nelson and J. Appelbaum, Treatment of superficial cutaneous pigmented lesions by melanin-specific selective photothermolysis using the Q-switched ruby laser, Ann. Plast. Surg., 1992, 29, 231–237.

    Article  CAS  Google Scholar 

  5. D. J. Goldberg, Laser treatment of pigmented lesions, Dermatol. Clin., 1997, 15, 397–407.

    Article  CAS  Google Scholar 

  6. M. Soncin, A. Busetti, F. Fusi, G. Jori and M. A. J. Rodgers, Irradiation of amelanotic melanoma cells with 532 nm high peak power pulsed laser radiation in the presence of the photothermal sensitiser Cu(ii)-haematoporphyrin: a new approach to cell photoinactivation, Photochem. Photobiol., 1999, 69, 708–712.

    Article  CAS  Google Scholar 

  7. A. Busetti, M. Soncin, E. Reddi, M. A. J. Rodgers, M. E. Kenney and G. Jori, Photothermal sensisitisation of amelanotic melanoma cells by Ni(ii)-octabutoxy-naphthalocyanine, J. Photochem. Photobiol., B: Biol., 1999, 53, 103–109.

    Article  CAS  Google Scholar 

  8. G. Valduga, E. Reddi, G. Jori, R. Cubeddu, P. Taroni and G. Valentini, Steady state and time-resolved spectroscopic studies on Zinc(ii)-phthalocyanine in liposomes, J. Photochem. Photobiol., B: Biol., 1992, 16, 331–340.

    Article  CAS  Google Scholar 

  9. C. Fabris, G. Valduga, G. Miotto, L. Borsetto, G. Jori, S. Garbisa and E. Reddi, Photosensitisation with Zn(ii)-phthalocyanine as a switch in the decision between apoptosis and necrosis, Cancer Res., 2001, 61, 7495–7500.

    CAS  PubMed  Google Scholar 

  10. V. Cuomo, G. Jori, B. Rihter, M. E. Kenney and M. A. J. Rodgers, Liposome-delivered Si(iv)-naphthalocyanine as a photodynamic sensitiser for experimental tumours: pharmacokinetic and phototherapeutic studies, Br. J. Cancer, 1990, 62, 966–970.

    Article  CAS  Google Scholar 

  11. M. Soncin, A. Busetti, R. Biolo, G. Jori, G. Kwag, Y.-S. Li, M. E. Kenney and M. A. J. Rodgers, Photoinactivation of amelanotic and melanotic melanoma cells sensitized by axially substituted Si-naphthalocyanines, J. Photochem. Photobiol., B: Biol., 1998, 42, 202–210.

    Article  CAS  Google Scholar 

  12. M. Versluis, B. Schmitz, A. van der Heydt and D. Lohse, How snapping shrimp snap: through cavitation effects, Science, 2000, 589, 2114–2117.

    Article  Google Scholar 

  13. G. Valduga, E. Reddi, G. Jori, R. Cubeddu, P. Taroni and L. Valentini, Steady-state and time-resolved spectroscopic studies of Zn(ii)-phthalocyanine in liposomes, Photochem. Photobiol., B: Biol., 1992, 16, 331–340.

    Article  CAS  Google Scholar 

  14. J. Moan and S. Sommer, Oxygen dependence of the photosensitising effect of haematoporphyrin derivative in NHIK 3025 cells, Cancer Res., 1985, 45, 1608–1610.

    CAS  PubMed  Google Scholar 

  15. T. H. Foster, R. S. Murant, R. B. Bryant, R. S. Knox, S. L. Gibson and R. Hilf, Oxygen consumption and diffusion effect in photodynamic therapy, Radiat. Res., 1991, 126, 296–303.

    Article  CAS  Google Scholar 

  16. B. W. Henderson and T. J. Dougherty, How does photodynamic therapy work?, Photochem. Photobiol., 1992, 55, 931–948.

    Article  Google Scholar 

  17. M. C. Luna, S. Wong and C. J. Gomer, Photodynamic therapy mediated induction of early response genes, Cancer Res., 1994, 54, 1374–1380.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Jori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camerin, M., Rodgers, M.A.J., Kenney, M.E. et al. Photothermal sensitisation: evidence for the lack of oxygen effect on the photosensitising activity. Photochem Photobiol Sci 4, 251–253 (2005). https://doi.org/10.1039/b416418k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b416418k

Navigation