Skip to main content
Log in

A picosecond time-resolved study on prototropic reactions of electronically excited 1,5- and 1,8-diaminonaphthalenes in aqueous solution

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The proton transfer to solvent in the excited state of protonated diaminonaphthalenes, 1,5-diaminonaphthalene (1,5-DAN) and 1,8-diaminonaphthalene (1,8-DAN), in aqueous solution, has been investigated by picosecond time-resolved fluorescence measurements. The deprotonation rate constants of the dications of 1,8-DAN and 1,5-DAN in the excited state to produce the corresponding monocations are determined to be 1.3 × 1010 and 5.6 × 109 s−1, respectively, from dynamic analyses of their fluorescence time profiles. The much larger proton-dissociation rates compared with that of 1-aminonaphthalene (0.6 × 109 s−1) can be attributed to an electron-withdrawing effect due to the ammonium group at the 5- or 8-position in the naphthalene ring. The remarkably large proton-dissociation rate in 1,8-DAN can be ascribed to its larger reaction exergonicity which results from the electrostatic repulsion between the two ammonium groups in the reactant (the dication state) and the stabilization of the monocation state due to hydrogen bonding interactions between the NH3+ and NH2 moieties. The difference in their acidities in the excited state is discussed in terms of the reaction free energy and the proton affinities are evaluated from ab initio MO calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Förster, Fluoreszenzspektrum und wasserstoffionen-konzentration, Naturwissenschaften, 1949, 36, 186–187.

    Article  Google Scholar 

  2. A. Weller, Allgemeine basenkatalyse bei der elektrolytischen dissoziation angeregter naphthole, Z. Elektrochem., 1954, 58, 849–853.

    CAS  Google Scholar 

  3. A. Weller, Der reaktionsmechanismus der säuredissoziation am beispiel der protolytischen reaktion des angeregten β-naphthols, Z. Phys. Chem., Neue Folge, 1955, 3, 238–254.

    Article  CAS  Google Scholar 

  4. L. M. Tolbert and K. M. Solntsev, Excited-state proton transfer: from constrained systems to “Super” photoacids to superfast proton transfer, Acc. Chem. Res., 2002, 35, 19–27.

    Article  CAS  Google Scholar 

  5. A. K. Mishra, Fluorescence of excited singlet state acids in certain organized media: applications as molecular probes, in Understanding and Manipulating Excited State Processes, Molecular and Supramolecular Photochemistry Series, ed. V. Ramamurthy and K. S. Schanze, Marcel Dekker, New York, 2001, vol. 8, ch. 10.

  6. L. G. Alnaut and S. J. Formosinho, Excited-state proton transfer reactions I. Fundamentals and intermolecular reactions, J. Photochem. Photobiol., A, 1993, 75, 1–20.

    Article  Google Scholar 

  7. I. Y. Martynov, A. B. Demyashkevich, B. M. Uzhinov and M. G. Kuzmin, Proton transfer reactions in the excited electronic states of aromatic molecules, Russ. Chem. Rev., 1977, 46, 3–31.

    Article  CAS  Google Scholar 

  8. H. Shizuka, Excited-state proton-transfer reactions and proton-induced quenching of aromatic compounds, Acc. Chem. Res., 1985, 18, 141–147.

    Article  CAS  Google Scholar 

  9. S. P. Webb, S. W. Yeh, L. A. Philips, M. A. Tolbert and J. H. Clark, Ultrafast excited-state proton transfer in 1-naphthol, J. Am. Chem. Soc., 1984, 106, 7286–7288.

    Article  CAS  Google Scholar 

  10. E. Pines, D. Pines, T. Barak, B.-Z. Magnes, L. M. Tolbert and J. E. Haubrich, Isotope and temperature effects in ultrafast proton transfer from a strong excited-state acid, Ber. Bunsen-Ges. Phys. Chem., 1998, 102, 511–517.

    Article  CAS  Google Scholar 

  11. S. Shiobara, S. Tajima and S. Tobita, Substituent effects on ultrafast excited-state proton transfer of protonated aniline derivatives in aqueous solution, Chem. Phys. Lett., 2003, 380, 673–680.

    Article  CAS  Google Scholar 

  12. S. Tajima, S. Shiobara, H. Shizuka and S. Tobita, Excited-state proton-dissociation of N-alkylated anilinium ions in aqueous solution studied by picosecond fluorescence measurements, Phys. Chem. Chem. Phys., 2002, 4, 3376–3382.

    Article  CAS  Google Scholar 

  13. S. Shiobara, R. Kamiyama, S. Tajima, H. Shizuka and S. Tobita, Excited-state proton transfer to solvent of protonated aniline derivatives in aqueous solution: a remarkable effect of ortho alkyl group on the proton dissociation rate, J. Photochem. Photobiol., A, 2002, 154, 53–60.

    Article  CAS  Google Scholar 

  14. K. Tsutsumi and H. Shizuka, Determination of proton dissociation constants in the excited state of naphthylamines by dynamic analyses, Z. Phys. Chem., 1978, 111, 129–142.

    Article  CAS  Google Scholar 

  15. S. P. Webb, L. A. Philips, S. W. Yeh, L. M. Tolbert and J. H. Clark, Picosecond kinetics of the excited-state, proton-transfer reaction of 1-naphthol in water, J. Phys. Chem., 1986, 90, 5154–5164.

    Article  CAS  Google Scholar 

  16. A. Paul, R. S. Sarpal and S. K. Dogra, Effects of solvent and acid concentration on the absorption and fluorescence spectra of α,α-diaminonaphthalenes, J. Chem. Soc., Faraday Trans., 1990, 86, 2095–2101.

    Article  CAS  Google Scholar 

  17. R. Manoharan and S. K. Dogra, Acidity constants in the excited states: absence of an excited-state prototropic equilibrium for the monocation-neutral pair of 2,3-diaminonaphthalene, J. Phys. Chem., 1988, 92, 5282–5287.

    Article  CAS  Google Scholar 

  18. C. Hansch, A. Leo and R. W. Taft, A survey of Hammett substituent constants and resonance and field parameters, Chem. Rev., 1991, 91, 165–195.

    Article  CAS  Google Scholar 

  19. H. Shizuka and S. Tobita, Proton-induced quenching and hydrogen-deuterium isotope-exchange reactions of methoxynaphthalenes, J. Am. Chem. Soc., 1982, 104, 6919–6927.

    Article  CAS  Google Scholar 

  20. H. A. Staab, C. Krieger, G. Hieber and K. Oberdorf, 1,8-Bis(dimethylamino)4,5-dihydroxynaphthalene, a natural, intramolecularly protonated “Proton sponge” with zwitterionic structure, Angew. Chem., Int. Ed. Engl., 1997, 36, 1884–1886.

    Article  CAS  Google Scholar 

  21. A. Szemik-Hojniak, J. M. Zwier, W. J. Buma, R. Bursi, J. H. van der Waals, Two ground state conformers of the proton sponge 1,8-bis(dimethylamino)naphthalene revealed by fluorescence spectroscopy and ab initio calculations, J. Am. Chem. Soc., 1998, 120, 4840–4844.

    Article  CAS  Google Scholar 

  22. B. Kovačević, Z. B. Maksić, The proton affinity of the superbase 1,8-bis(tetramethylguanidino)naphthalene (TMGN) and some related compounds: a theoretical study, Chem.–Eur. J., 2002, 8, 1694–1702.

    Article  Google Scholar 

  23. T. Yoshihara, H. Shimada, H. Shizuka and S. Tobita, Internal conversion of o-aminoacetophenone in solution, Phys. Chem. Chem. Phys., 2001, 3, 4972–4978.

    Article  CAS  Google Scholar 

  24. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, GAUSSIAN 03 (Revision B.05), Gaussian, Inc., Pittsburgh, PA, 2003.

    Google Scholar 

  25. E. P. Hunter and S. G. Lias, Evaluated gas phase basicities and proton affinities of molecules: an update, J. Phys. Chem. Ref. Data, 1998, 27, 413–656.

    Article  CAS  Google Scholar 

  26. J. B. Birks, in Photophysics of Aromatic Molecules, Wiley, London, 1970.

    Google Scholar 

  27. J. F. Ireland and P. A. H. Wyatt, Acid–base properties of electronically excited states or organic molecules, Adv. Phys. Org. Chem., 1976, 12, 131–221.

    CAS  Google Scholar 

  28. T. Förster, Elektrolytische dissoziation angeregter moleküle, Z. Elektrochem., 1950, 54, 42–46.

    Google Scholar 

  29. Z. R. Grabowski and A. Grabowska, The Förster cycle reconsidered, Z. Phys. Chem., 1976, 101, 197–208.

    Article  CAS  Google Scholar 

  30. E. L. Mertz, V. A. Tikhomirov and L. V. Krishtalik, Stokes shift as a tool for probing the solvent reorganization energy, J. Phys. Chem. A, 1997, 101, 3433–3442.

    Article  CAS  Google Scholar 

  31. R. A. Marcus, Theoretical relations among rate constants, barriers, and Brønsted slopes of chemical reactions, J. Phys. Chem., 1968, 72, 891–899.

    Article  CAS  Google Scholar 

  32. R. A. Marcus, The second R. A. Robinson memorial lecture. Electron, proton and related transfers, Faraday Discuss. Chem. Soc., 1982, 74, 7–15.

    Article  Google Scholar 

  33. E. F. Caldin, in The Mechanisms of Fast Reactions in Solution, IOS Press, Amsterdam, 2001, ch. 8.

    Google Scholar 

  34. N. Agmon and R. D. Levine, Energy, entropy and the reaction coordinate: thermodynamic-like relations in chemical kinetics, Chem. Phys. Lett., 1977, 52, 197–201.

    Article  CAS  Google Scholar 

  35. N. Agmon and R. D. Levine, Structural considerations in chemical kinetics: gas phase H-atom transfer reaction series, Isr. J. Chem., 1980, 19, 330–336.

    Article  CAS  Google Scholar 

  36. S. Suzuki, T. Fujii, A. Imai and H. Akahori, The fluorescent level inversion of dual fluorescences and the motional relaxation of excited state molecules in solutions, J. Phys. Chem., 1977, 81, 1592–1598.

    Article  CAS  Google Scholar 

  37. G. Berden, W. L. Meerts, D. F. Plusquellic, I. Fujita and D. W. Pratt, High resolution electronic spectroscopy of 1-aminonaphthalene: S0 and S1 geometries and S1←S0 transition moment orientations, J. Chem. Phys., 1996, 104, 3935–3946.

    Article  CAS  Google Scholar 

  38. S. J. Humphrey and D. W. Pratt, Evidence for S1/S2 electronic state mixing in the S1← S0 fluorescence excitation spectrum of 1-naphthol, Chem. Phys. Lett., 1996, 257, 169–174.

    Article  CAS  Google Scholar 

  39. R. Knochenmuss, P. L. Muino and C. Wickleder, Vibronic coupling and microscopic solvation of 1-naphthol, J. Phys. Chem., 1996, 100, 11218–11227.

    Article  CAS  Google Scholar 

  40. B.-Z. Magnes, N. V. Strashnikova and E. Pines, Evidence for 1La, 1Lb dual state emission in 1-naphthol and 1-methoxynaphthalene fluorescence in liquid solutions, Isr. J. Chem., 1999, 39, 361–373.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takehira, K., Sugawara, Y., Kowase, S. et al. A picosecond time-resolved study on prototropic reactions of electronically excited 1,5- and 1,8-diaminonaphthalenes in aqueous solution. Photochem Photobiol Sci 4, 287–293 (2005). https://doi.org/10.1039/b414725a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b414725a

Navigation