Skip to main content

Advertisement

Log in

Forward (singlet–singlet) and backward (triplet–triplet) energy transfer in a dendrimer with peripheral naphthalene units and a benzophenone core

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photochemical and photophysical behaviour of two dendrimers consisting of a benzophenone core and branches that contain four (4) and eight (5) naphthalene units at the periphery has been investigated in CH2Cl2 solution (298 K) and in CH2Cl2/CHCl3 1: 1 v/v rigid matrix (77 K). For comparison purposes, the photophysical properties of dimethoxybenzophenone (1), 2-methylnaphthalene (2) and of a dendron containing four naphthalene units (3) have also been studied. In both dendrimers 4 and 5, excitation of the peripheral naphthalene units is followed by fast (1.1 × 109 s−1 at 298 K, > 2.5 × 109 s−1 at 77 K for 4; 2.9 × 108 s−1 at 298 K, 7 × 105 s−1 at 77 K for 5) singlet–singlet energy transfer to the benzophenone core. On a longer time scale (>1 × 106 s−1 at 298 K, >6 × 103 s−1 at 77 K for 4; 3.1 × 107 s−1 at 298 K, ca. 3 × 102 s−1 at 77 K for 5) a back energy transfer process takes place from the triplet state of the benzophenone core to the triplet state of the peripheral naphthalene units. Selective excitation of the benzophenone unit is followed by intersystem crossing and triplet–triplet energy transfer to the peripheral naphthalene units. In hydrogen donating solvents, the benzophenone core is protected from degradation by the presence of the naphthalene units. In solutions containing Tb(CF3SO3)3, sensitization of the green Tb3+ luminescence is observed on excitation of both the peripheral naphthalene units and the benzophenone core of 5. Upon excitation of the naphthalene absorption band (266 nm) with a laser source, intradendrimer triplet–triplet annihilation of naphthalene excited states leads to delayed naphthalene fluorescence (λmax = 335 nm), that can also be obtained upon excitation at 355 nm (benzophenone absorption band). The results obtained show that preorganization of photoactive units in a dendritic structure can be exploited for a variety of useful functions, including photosensitized emission, protection from undesired photoreactions, and energy up-conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Topics in Current Chemistry: Dendrimers V, ed. F. Vögtle and C. Schalley, Springer Verlag, Berlin, 2003

    Google Scholar 

  2. R. Newkome, C. Moorefield and F. Vögtle, Dendrimers and Dendrons: Concepts, Syntheses, Perspectives, VCH, Weinheim, 2001

    Google Scholar 

  3. Dendrons and Other Dendritic Polymers, ed. J. M. J. Fréchet and D. A. Tomalia, Wiley, New York, 2001.

    Google Scholar 

  4. U. Boas and P. M. H. Heegaard, Dendrimers in drug research, Chem. Soc. Rev., 2004, 33, 43

    Google Scholar 

  5. Special issue on Dendrimers and Nanoscience, ed. D. Astruc, C. R. Chim., 2003, 6(8–10)

    Google Scholar 

  6. S.-E. Stiriba, H. Frey and R. Haag, Dendritic polymers in biomedical applications: from potential to clinical use in diagnostics and therapy, Angew. Chem., Int. Ed., 2002, 41, 1329

    Google Scholar 

  7. B. Romagnoli and W. Hayes, Chiral dendrimers from architecturally interesting hyperbranched macromolecules to functional materials, J. Mater. Chem., 2002, 12, 767

    Google Scholar 

  8. G. E. Oosterom, J. N. H. Reek, P. C. J. Kamer, P. W. N. M. van Leeuwen, Transition metal catalysis using functionalized dendrimers, Angew. Chem., Int. Ed., 2001, 40, 1828

    Google Scholar 

  9. D. C. Tully, J. M. J. Fréchet, Dendrimers at surfaces and interfaces: chemistry and applications, Chem. Commun., 2001, 1229

    Google Scholar 

  10. S. Hecht, J. M. J. Fréchet, Dendritic encapsulation of function: applying nature’s site isolation principle from biomimetics to materials science, Angew. Chem., Int. Ed., 2001, 40, 74

    Google Scholar 

  11. D. Astruc and F. Chardac, Dendritic Catalysts and Dendrimers in Catalysis, Chem. Rev., 2001, 101, 2991

    Google Scholar 

  12. A. D. Schlüter and J. P. Rabe, Dendronized polymers: synthesis, characterization, assembly at interfaces, and manipulation, Angew. Chem., Int. Ed., 2000, 39, 864.

    Google Scholar 

  13. For some leading reviews see: (ita) V. Balzani, P. Ceroni, M. Maestri, C. Saudan and V. Vicinelli, Luminescent dendrimers. Recent advances, Top. Cur. Chem., 2003, 228, 159

    Google Scholar 

  14. V. Balzani, P. Ceroni, M. Maestri and V. Vicinelli, Light-harvesting dendrimers, Curr. Opin. Chem. Biol., 2003, 7, 657

    Google Scholar 

  15. J.-F. Nierengarten, N. Armaroli, G. Accorsi, Y. Rio and J. F. Eckert, [60]Fullerene: a versatile photoactive core for dendrimer chemistry, Chem. Eur. J., 2003, 9, 36.

    Google Scholar 

  16. S. Campagna, C. Di Pietro, F. Loiseau, B. Maubert, N. McClenaghan, R. Passalacqua, F. Puntoriero, V. Ricevuto and S. Serroni, Recent advances in luminescent polymetallic dendrimers containing the 2,3-bis(2’-pyridyl)pyrazine bridging ligand, Coord. Chem. Rev., 2002, 229, 67

    Google Scholar 

  17. V. Balzani, P. Ceroni, A. Juris, M. Venturi, S. Campagna, F. Puntoriero and S. Serroni, Dendrimers based on photoactive metal complexes. Recent advances, Coord. Chem. Rev., 2001, 219–221, 545

    Google Scholar 

  18. A. Adronov, J. M. J. Fréchet, Light-harvesting dendrimers, Chem. Commun., 2000, 1701.

    Google Scholar 

  19. F. Pina, P. Passaniti, M. Maestri, V. Balzani, F. Vögtle, M. Gorka, S.-K. Lee, J. Van Heyst and H. Fakhrnabavi, Ground and excited-state electronic interactions in poly(propylene amine) dendrimers functionalized with naphthyl units: effect of protonation and metal complexation, ChemPhysChem, 2004, 5, 473

    Google Scholar 

  20. C. Saudan, V. Balzani, P. Ceroni, M. Gorka, M. Maestri, V. Vicinelli, F. Vögtle, Dendrimers with a cyclam core. Absorption spectra, multiple luminescence, and effect of protonation, Tetrahedron, 2003, 59, 3845

    Google Scholar 

  21. T. H. Ghaddar, J. K. Whitesell and M. A. Fox, Excimer formation in a naphthalene-labeled dendrimer, J. Phys. Chem. B, 2001, 105, 8729

    Google Scholar 

  22. M. Maus, S. Mitra, M. Lor, J. Hofkens, T. Weil, A. Herrmann, K. Müllen and F. C. De Schryver, Intramolecular energy hopping in polyphenylene dendrimers with an increasing number of peryleneimide chromophores, J. Phys. Chem. A, 2001, 105, 3961

    Google Scholar 

  23. L. Brauge, A.-M. Caminade, J.-P. Majoral, S. Slomkowski and M. Wolszczak, Segmental mobility in phosphorus-containing dendrimers. Studies by fluorescent spectroscopy, Macromolecules, 2001, 34, 5599

    Google Scholar 

  24. S. F. Swallen, Z. Zhu, J. S. Moore and R. Kopelman, Correlated excimer formation and molecular rotational dynamics in phenylacetylene dendrimers, J. Phys. Chem. B, 2000, 104, 3988

    Google Scholar 

  25. L. A. Baker and R. M. Crooks, Photophysical properties of pyrene-functionalized poly(propylene imine) demdrimers, Macromolecules, 2000, 33, 9034.

    Google Scholar 

  26. For some recent papers see: a S. Jordens, G. De Belder, M. Lor, G. Schweitzer, M. Van der Auweraer, T. Weil, E. Reuther, K. Müllen, F. C. De Schryver, Energy transfer within perylene-terrylene dendrimers evidenced by polychromatic transient absorption measurements, Photochem. Photobiol. Sci., 2003, 2, 177

    Google Scholar 

  27. U. Hahn, M. Gorka, F. Vögtle, V. Vicinelli, P. Ceroni, M. Maestri and V. Balzani, Light harvesting dendrimers. Efficient intra- and inter-molecular energy-transfer processes in a species containing sixty five chromophoric groups of four different types, Angew. Chem., Int. Ed., 2002, 41, 3595

    Google Scholar 

  28. V. Vicinelli, P. Ceroni, M. Maestri, V. Balzani, M. Gorka, F. Vögtle, Luminescent lanthanide ions hosted in a fluorescent polylysin dendrimer. Antenna-like sensitization of visible and near-infrared emission, J. Am. Chem. Soc., 2002, 124, 6461

    Google Scholar 

  29. M.-S. Choi, T. Aida, T. Yamazaki and I. Yamazaki, Dendritic multiporphyrin arrays as light-harvesting antennae: effects of generation number and morphology on intramolecular energy transfer, Chem. Eur. J., 2002, 8, 2668

    Google Scholar 

  30. J. M. Serin, D. W. Brousmiche, J. M. J. Fréchet, Cascade energy transfer in a conformationally mobile multichromophoric dendrimer, Chem. Commun., 2002, 2605

    Google Scholar 

  31. E. M. Harth, S. Hecht, B. Helms, E. E. Malmstrom, J. M. J. Fréchet and C. J. Hawker, The effect of macromolecular architecture in nanomaterials: a comparison of site isolation in porphyrin core dendrimers and their isomeric linear analogues, J. Am. Chem. Soc., 2002, 124, 3926

    Google Scholar 

  32. M. Kimura, T. Shiba, M. Yamazaki, K. Hanabusa, H. Shirai and N. Kobayashi, Construction of regulated nanospace around a porphyrin core, J. Am. Chem. Soc., 2001, 123, 5636.

    Google Scholar 

  33. M.-H. Xu, J. Lin, Q.-S. Hu and L. Pu, Fluorescent sensor for the enantioselective recognition of mandelic acid: signal amplification by dendritic branching, J. Am. Chem. Soc., 2002, 124, 14239

    Google Scholar 

  34. V. J. Pugh, Q. S. Hu, X. Zuo, F. D. Lewis and L. Pu, Optically active BINOL core-based phenyleneethynylene dendrimers for the enantioselective fluorescent recognition of amino alcohols, J. Org. Chem., 2001, 66, 6136

    Google Scholar 

  35. V. Balzani, P. Ceroni, S. Gestermann, C. Kauffmann, M. Gorka, F. Vögtle, Dendrimers as fluorescent sensors with signal amplification, Chem. Commun., 2000, 853.

    Google Scholar 

  36. R. Gronheid, A. Stefan, M. Cotlet, J. Hofkens, J. Qu, K. Müllen, M. Van der Auweraer, J. W. Verhoeven and F. S. De Schryver, Reversible intramolecular electron transfer at the single-molecule level, Angew. Chem., Int. Ed., 2003, 42, 4209

    Google Scholar 

  37. T. H. Ghaddar, J. F. Wishart, D. W. Thompson, J. K. Whitesell and M. A. Fox, A dendrimer-based electron antenna: paired electron-transfer reactions in dendrimers with a 4,4’-bipyridine core and naphthalene peripheral groups, J. Am. Chem. Soc., 2002, 124, 8285

    Google Scholar 

  38. P. Ceroni, V. Vicinelli, M. Maestri, V. Balzani, W. M. Müller, U. Müller, U. Hahn, F. Osswald, F. Vögtle, Dendrimers with a 4,4’-Bipyridinium Core and Electron-donor Branches. Electrochemical and Spectroscopic Properties, New J. Chem., 2001, 25, 989

    Google Scholar 

  39. C. S. Rajesh, G. J. Capitosti, S. J. Cramer and D. A. Modarelli, Photoinduced electron-transfer within free base and zinc porphyrin containing poly(amide) dendrimers, J. Phys. Chem. B, 2001, 105, 10175.

    Google Scholar 

  40. G. Bergamini, P. Ceroni, V. Balzani, F. Vögtle and S.-K. Lee, Designing systems for a multiple use of light signals, ChemPhysChem, 2004, 5, 315.

    Google Scholar 

  41. A. Gilbert and J. Baggot, Essential of molecular photochemistry, Balckwell scientific publications, Oxford, 1991

    Google Scholar 

  42. N. J. Turro, Modern Molecular Photochemistry, The Benjamin-Cummings Publishing Co., Menlo Park, CA, 1978.

    Google Scholar 

  43. P. J. Wagner, R. J. Truman, A. E. Puchalski and R. Wake, Extent of charge transfer in the photoreduction of phenyl ketones by alkylbenzenes, J. Am. Chem. Soc., 1986, 108, 7727

    Google Scholar 

  44. P. J. Wagner, R. J. Truman and J. C. Scaiano, Substituent effects on hydrogen abstraction by phenyl ketone triplets, J. Am. Chem. Soc., 1985, 107, 7093

    Google Scholar 

  45. U. Pischel, S. Abad, L. R. Domingo, F. Boscá and M. A. Miranda, Diastereomeric differentiation in the quenching of excited states by hydrogen donors, Angew. Chem., Int. Ed., 2003, 42, 2531.

    Google Scholar 

  46. A. Beeby, L. M. Bushby, D. Maffeo and J. A. G. Williams, The efficient intramolecular sensitisation of terbium(iii) and europium(iii) by benzophenone-containing ligands, J. Chem. Soc., Perkin Trans. 2, 2000, 1281

    Google Scholar 

  47. M. H. V. Werts, M. A. Duin, J. W. Hofstraat and J. W. Verhoeven, Bathochromicity of Michler’s ketone upon coordination with lanthanide(iii) β-diketonates enables efficient sensitisation of Eu3+ for luminescence under visible light excitation, Chem. Commun., 1999, 799

    Google Scholar 

  48. A. P. Darmanyan and C. S. Foote, Solvent effects on singlet oxygen yield from n,π* and π,π* triplet carbonyl compounds, J. Phys. Chem., 1993, 97, 5032

    Google Scholar 

  49. W. M. Moore and M. Ketchum, The quenching effect of naphthalene on the photoreduction of benzophenone, J. Am. Chem. Soc., 1962, 84, 1368.

    Google Scholar 

  50. Previous investigations8 have shown that benzophenone is not fully satisfactory as a model for the dendritic core.

  51. Thermally activated reverse intersystem crossing occurs between T1 and S1 in benzophenone and its derivatives. See e.g.: a A. M. Turek, G. Krishnamoorthy, K. Phipps and J. Saltiel, Resolution of benzophenone delayed fluorescence and phosphorescence with compensation for thermal broadening, J. Phys. Chem. A, 2002, 106, 6044

    Google Scholar 

  52. J. Saltiel, H. C. Curtis, L. Metts, J. W. Miley, J. Winterle and M. Wrighton, Delayed fluorescence and phosphorescence of aromatic ketones in solution, J. Am. Chem. Soc., 1970, 92, 410.

    Google Scholar 

  53. Notice that in CH2Cl2: CH3OH 1: 1 (v/v) rigid matrix at 77 K no phosphorescence of the benzophenone core was observed for 5 upon excitation at 300 nm. This result suggests that in a polar matrix dendrimer 5 exhibits a more compact structure that favours energy transfer.

  54. Such a situation occurs also for acetophenone: N. Ohomori, T. Suzuki and M. Ito, Why does intersystem crossing occur in isolated molecules of benzaldehyde, acetophenone, and benzophenone, J. Phys. Chem., 1998, 92, 1086.

    Google Scholar 

  55. R. A. Keller and L. J. Dolby, Rate constants and the mechanism for the transfer of triplet excitation energy, J. Am. Chem. Soc., 1967, 89, 2768

    Google Scholar 

  56. A. A. Lamola, P. A. Leermakers, G. W. Byers and G. S. Hammond, Intramolecular electronic energy transfer between nonconjugated chromophores in some model compounds, J. Am. Chem Soc., 1965, 87, 2322.

    Google Scholar 

  57. The ratio between the intensities of the sensitized emissions for 1 and 5(3/1) has to be equal to the ratio between the lifetimes of the T1(n,π*) excited state of the two compounds in the presence of the quencher. In the case of 1, the excited state lifetime is [1/τ° + [Tb3+] × ket(1→Tb3+)]−1, whereas in the case of 5, the lifetime is [1/τ° + [Tb3+] × ket(5 → Tb3+) + ket(T1(n,π*)→T1(π,π*))]−1, where τ° is the lifetime of 1 in the absence of Tb3+.

  58. C. A. Parker, Phosphorescence and delayed fluorescence from solutions, Adv. Photochem., 1964, 2, 305.

    Google Scholar 

  59. In order to have the same percentage of light absorbed by the naphthalene units, an equimolar amount of a second generation Frechét dendron functionalized with benzene units at the periphery (compound D2 in ref. 8) was added to the solution of 2.

  60. In our experimental conditions, we observed a square dependence between the delayed fluorescence intensity and the laser excitation intensity, with a saturation effect at high laser power.

  61. C. A. Parker and T. A. Joyce, Phosphorescence of benzophenone in fluid solution, Chem. Commun., 1968, 749.

    Google Scholar 

  62. G. M. Steward and M. A. Fox, Chromophore-labeled dendrons as light harvesting antennae, J. Am. Chem. Soc., 1996, 118, 4354.

    Google Scholar 

  63. L. Prodi and A. Credi, From observed to corrected luminescence intensity of solution systems: an easy-to-apply correction method for standard spectrofluorimeters, Spectrochim. Acta A, 1998, 54, 159.

    Google Scholar 

  64. J. N. Demas and G. A. Crosby, Measurement of photoluminescence quantum yields. A review, J. Phys. Chem., 1971, 75, 991.

    Google Scholar 

  65. I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules, Academic Press, London, 1965.

    Google Scholar 

  66. E. Fischer, Ferri-oxalate actinometry, EPA Newsletter, 1984, 33

    Google Scholar 

  67. C. G. Hatchard and C. A. Parker, A new sensitive chemical actinometer. II. Potassium ferrioxalate as a standard chemical actinometer, Proc. R. Soc. London, Ser. A, 1956, 235, 518.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Ceroni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergamini, G., Ceroni, P., Maestri, M. et al. Forward (singlet–singlet) and backward (triplet–triplet) energy transfer in a dendrimer with peripheral naphthalene units and a benzophenone core. Photochem Photobiol Sci 3, 898–905 (2004). https://doi.org/10.1039/b408659g

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b408659g

Navigation