Skip to main content
Log in

Photocatalytic reduction of aromatic azides to amines using CdS and CdSe nanoparticles

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

We have shown that CdS and CdSe nanoparticles can act as very efficient and highly chemoselective photocatalysts for the reduction of aromatic azides to aromatic amines. In several cases, the reaction proceeds with quantum yields near 0.5, which approaches the theoretical maximum for a two-electron process. The wide scope of the reaction was confirmed with compounds containing electron withdrawing (–NO2, CO2R, COR) and electron donating groups (–OMe,–R,–Cl) at the para-, meta-, and ortho-positions. Remarkably, the reaction is relatively insensitive to the electron demands of the substituent. However, azides with meta-substituents give slightly lower yields than those with the same substituent at the ortho- or para-position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. H. Weller, Colloidal Semiconductor Q-Particles: Chemistry in the transition region between solid state and molecules, Angew. Chem., Int. Ed. Engl., 1993, 32, 41–53.

    Google Scholar 

  2. A. Hengelin, Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles, Chem. Rev., 1989, 89, 1861.

    Google Scholar 

  3. L. E. Brus, Quantum crystallites and non-linear optics, Appl. Phys. A, 1991, 53, 465.

    Google Scholar 

  4. H. Weller, Quantized semiconductor particles: a novel state of matter for materials science, Adv. Mater., 1993, 5, 88–95.

    Google Scholar 

  5. L. Brus, G. Hadjipanayis and R. Siegel, Electronic and optical properties of semiconductor nanocrystals: from molecules to bulk crystals, Nanophase Mater., 1994, 433–448.

    Google Scholar 

  6. A. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, Science, 1996, 271, 933–937.

    Google Scholar 

  7. T. Vossmeyer, L. Katsikas, M. Giersig, I. Popovic, K. Diesner, A. Chemseddine, A. Eychmuller and H. Weller, CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift, J. Phys. Chem., 1994, 98, 7665–7673.

    Google Scholar 

  8. Y. Wang and N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties, J. Phys. Chem., 1991, 95, 525–532.

    Google Scholar 

  9. D. Beydoun, R. Amal, G. Low and S. McEvoy, Role of nanoparticles in photocatalysis, J. Nanoparticle Res., 1999, 1, 439–458.

    Google Scholar 

  10. H. Matsumoto, H. Uchida, T. Matsunaga, K. Tanaka, T. Sakata, H. Mori and H. Yoneyama, Photoinduced reduction of viologens on size-separated CdS nanocrystals, J. Phys. Chem., 1994, 98, 11549–11556.

    Google Scholar 

  11. A. Hagfeldt and M. Gratzel, M. Light-induced redox reactions in nanocrystalline systems, Chem. Rev., 1995, 95, 49–68.

    Google Scholar 

  12. H. Yin, Y. Wada, T. Kitamura and S. Yanagida, Photoreductive dehalogenation of halogenated benzene derivatives using ZnS or CdS nanocrystallites as photocatalysts, Environ. Sci. Technol., 2001, 35, 227–231.

    Google Scholar 

  13. B. Korgel and H. Monbouquette, Quantum confinement effects enable photocatalyzed nitrate reduction at neutral pH Using CdS nanocrystals, J. Phys. Chem. B, 1997, 101, 5010–5017.

    Google Scholar 

  14. B. Korgel and H. Monbouquette, Controlled synthesis of mixed core and layered (Zn,Cd)S and (Hg,Cd)S Nanocrystals within Phosphatidylcholine Vesicles, Langmuir, 2000, 16, 3588–3594.

    Google Scholar 

  15. M. Hoffmann, S. Martin, W. Choi and D. Bahnemann, Encironmental applications of semiconductor photocatalysis, Chem. Rev., 1995, 95, 69–96.

    Google Scholar 

  16. H. Yoneyama, Photoreduction of carbon dioxide on quantized semiconductor nanoparticles in solution, Catal. Today, 1997, 39, 169–175.

    Google Scholar 

  17. H. Inoue, T. Torimoto, T. Sakata, H. Mori and H. Yoneyama, Effects of size quantizeation of zinc sulfide microcystallites on photocatalytic reduction of carbon dioxide, Chem. Lett., 1990, 1483–1486.

    Google Scholar 

  18. M. Green and P. O’Brien, Recent advances in the preparation of semiconductors as isolated nanometric particles: new routes to quantum dots, Chem. Commun., 1999, 2235–2241.

    Google Scholar 

  19. C. Murray, D. Norris and M. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc., 1993, 115, 8706–8715.

    Google Scholar 

  20. T. Vossmeyer, G. Reck, L. Katsikas, E. T. K. Haupt, B. Schultz and H. Weller, A “double diamond superlattice” built up of Cd17S4(SCH2CH2OH)26 clusters, Science, 1995, 267, 1476–1479.

    Google Scholar 

  21. Y. Nosaka, N. Ohta, T. Fukuyama and N. Fujii, Size control of ultrasmall CdS particles in aqueous solution by using various thiols, J. Colloid Interface Sci., 1993, 155, 23–29.

    Google Scholar 

  22. B. Degraff, D. Gillespie and R. Sundberg, Phenyl nitrene. a flash photolytic investigation of the reaction with secondary amines, J. Am. Chem. Soc., 1974, 96, 7491–7496.

    Google Scholar 

  23. A. Schrock and G. Schuster, Photochemistry of phenyl azide: chemical properties of the transient intermediates, J. Am. Chem. Soc., 1984, 106, 5228–5234.

    Google Scholar 

  24. E. Leyva, M. Platz, G. Persy and J. Wirz, Photochemistry of phenyl azide: the role of singlet and triplet phenylnitrene as transient intermediates, J. Am. Chem. Soc., 1986, 108, 3783–3790.

    Google Scholar 

  25. T. Liang and G. Schuster, Photochemistry of 3- and 4-nitrophenyl azide: detection and characterization of reactive intermediates, J. Am. Chem. Soc., 1987, 109, 7803–7810.

    Google Scholar 

  26. G. Schuster and M. Platz, Photochemistry of phenyl azide, Adv. Photochem., 1987, 17, 69–143.

    Google Scholar 

  27. M. Platz, Nitrenes, Wiley-Interscience, Hoboken, NJ, 2004, pp. 502–559.

    Google Scholar 

  28. J. Grimshaw, Photochemistry of Aryl Diazonium Salts, Triazoles and Tetrazoles, CRC Press, Boca Raton, FL, 2003, pp. 44.1–44.31.

    Google Scholar 

  29. Y. Li, J. Kirby, M. George, M. Poliakoff and G. Schuster, 1,2-Didehydroazepines from the photolysis of substituted aryl azides: analysis of their chemical and physical properties by time-resolved spectroscopic methods, J. Am. Chem. Soc., 1988, 110, 8092–8098.

    Google Scholar 

  30. N. Gritsan, D. Tigelaar and M. Platz, A laser flash photolysis study of some simple para-substituted derivatives of singlet phenyl nitrene, J. Phys. Chem. A, 1999, 103, 4465–4469.

    Google Scholar 

  31. T. Liang and G. Schuster, Photochemistry of p-nitrophenyl azide: single-electron-transfer reaction of the triplet nitrene, J. Am. Chem. Soc., 1986, 108, 546–548.

    Google Scholar 

  32. Thiols are known to be excellent hydrogen atom donors towards a wide range of reactive intermediates: (a) S. Carroll, B. Nay, E. Scriven, H. Suschitzky and D. Thomas, Decomposition of aromatic azides in ethanethiol, Tetrahedron Lett., 1977, 18, 3175–3178.

    Google Scholar 

  33. S. Carroll, B. Nay, E. Scriven and H. Suschitzky, Decomposition of arylazides in piperidine, Tetrahedron Lett., 1977, 18, 943–946.

    Google Scholar 

  34. E. Leyva and M. Platz, The temperature dependent photochemistry of phenyl azide in diethylamine, Tetrahedron Lett., 1985, 26, 2147–2150.

    Google Scholar 

  35. H. Lund and O. Hammerich, Organic Electrochemistry, Marcel Dekker, Inc., New York, 4th edn., 2001.

    Google Scholar 

  36. A. Adamson, Substitutiion Reactions of Reinecke’s Salt, J. Am. Chem. Soc., 1958, 80, 3183–3189.

    Google Scholar 

  37. E. Wegner and A. Adamson, Photochemistry of complex ions. III. Absolute quantum yields for the photolyis of some aqueous chromium(iii) complexes. Chemical actinometry in the long wavelength visible region, J. Am. Chem. Soc., 1966, 88, 394–404.

    Google Scholar 

  38. S. Murov, I. Carmichael and G. Hug, Handbook of Photochemistry, Marcel Dekker, Inc., New York, 2nd edn., 1993.

    Google Scholar 

  39. This observation is reminiscent of the lack of substituent effects on the rate of rearrangement reported by Gritsan et al., in ref. 15.

  40. T. Dannhauser, M. O’Neil, K. Johansson, D. Whitten and G. McLendon, Photophysics of quantized colloidal semiconductors dramatic luminescence enhancement by binding of simple amines, J. Phys. Chem., 1986, 90, 6074–6076.

    Google Scholar 

  41. L. Spanhel, M. Haase, H. Weller and A. Henglein, Photochemistry of Colloidal Seminconductors. 20. Surface Modification and stability of strong luminescing CdS particles, J. Am. Chem. Soc., 1987, 109, 5649–5666.

    Google Scholar 

  42. P. Kamat, M. de Lind Van Wijngaarden and S. Hotchandani, Surface modification of CdS colloids with mercaptoethylamine, Isr. J. Chem., 1993, 33, 47–51.

    Google Scholar 

  43. Y. Nosaka and M. Fox, Effect of charge of polymeric stabilizing agents on the quantum yields of photoinduced electron transfer from photoexcited colloidal semiconductors to adsorbed viologens, Langmuir, 1987, 3, 1147–1150.

    Google Scholar 

  44. T. Rajh and J. Rabani, Effects of charged polymers on interfacial electron transfer processes in CdS colloidal systems, Langmuir, 1991, 7, 2054–2059.

    Google Scholar 

  45. H. Inoue, R. Nakamura and H. Yoneyama, Effect of charged conditions of stabilizers for cadmium sulfide microcrystalline photocatalysts on photoreduction of carbon dioxide, Chem. Lett., 1994, 1227–1230.

    Google Scholar 

  46. U. Resch, A. Eychmuller, M. Haase and H. Weller, Absorption and fluorescence behavior of redispersible cadmium sulfide colloids in various organic solvents, Langmuir, 1992, 8, 2215–2218.

    Google Scholar 

  47. L. Colvin, A. Goldstein and A. Alivisatos, Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers, J. Am. Chem. Soc., 1992, 114, 5221–5230.

    Google Scholar 

  48. P. Kamat and N. Dimitrijevic, Photoelectrochemistry in semiconductor particulate systems. 13. Surface modification of cadmium sulfide semiconductor colloids with diethyldithiocarbamate, J. Phys. Chem., 1989, 93, 4259–4263.

    Google Scholar 

  49. T. Uchihara, M. Matsumura, J. Ono and H. Tsubomura, Effect of EDTA on the photocatalytic activities and flatband potentials of cadmium sulfide and cadmium selenide, J. Phys. Chem., 1990, 94, 415–418.

    Google Scholar 

  50. R. Rossetti and L. Brus, Picosecond resonance Raman scattering study of methylviologen reduction on the surface of photoexcited colloidal cadmium sulfide crystallites, J. Phys. Chem., 1986, 90, 558–560.

    Google Scholar 

  51. R. Matthews, An adsorption water purifier with in situ photocatalytic regeneration, J. Catal., 1988, 113, 549–555.

    Google Scholar 

  52. N. Lewis, An analysis of charge transfer rate constants for semiconductor/liquid interfaces, Annu. Rev. Phys. Chem., 1991, 42, 543–580.

    Google Scholar 

  53. J. Zhang, Interfacial charge carrier dynamics of colloidal semiconductor nanoparticles, J. Phys. Chem. B, 2000, 104, 7239–7253.

    Google Scholar 

  54. D. Amantini, F. Pizzo and L. Vaccaro, Selected methods for the reduction of the azido group, Org. Prep. Proced. Int., 2002, 34, 109–147.

    Google Scholar 

  55. M. B. Baizer, Organic Electrochemistry, Marcel Dekker, New York, 1973.

    Google Scholar 

  56. Encyclopedia of Electrochemistry of the Elements, ed. P. E. Iversen, Marcel Dekker, New York, 1979, vol. XIII, p. 209.

  57. D. Herbranson and M. Hawley, Electrochemical reduction of p-nitrophenyl azide: evidence consistent with the formation of p-nitrophenylnitrene anion radical as a short-lived intermediate, J. Org. Chem., 1990, 55, 4297–4303.

    Google Scholar 

  58. J. Moutet, A. Ourari and A. Zouaoui, Electrocatalytic hydrogenation of azides using precious metal microparticles dispersed in polymer films, Electrochim. Acta, 1992, 37, 1261–1263.

    Google Scholar 

  59. When methanol is used as a co-solvent for photocatalysis it can act as an electron donor. See ref. 4(c).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold Monbouquette.

Additional information

Electronic supplementary information (ESI) available: The preparation of CdS and CdSe nanoparticles, the synthesis of aromatic azides, procedures for the photocatalyzed reduction of aromatic azides, and procedures for the quantum yield measurements. See http://www.rsc.org/suppdata/pp/b4/b404268a/

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warrier, M., Lo, M.K.F., Monbouquette, H. et al. Photocatalytic reduction of aromatic azides to amines using CdS and CdSe nanoparticles. Photochem Photobiol Sci 3, 859–863 (2004). https://doi.org/10.1039/b404268a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b404268a

Navigation