Skip to main content
Log in

Phototactic motility in the unicellular cyanobacterium Synechocystis sp. PCC 6803

Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Synechocystis sp. PCC 6803 is a unicellular motile cyanobacterium that shows positive and negative phototaxis on agar plates under lateral illumination. Recent studies on the molecular mechanisms of the phototactic motility of Synechocystis have revealed that a number of genes are responsible for its pilus-dependent motility and phototaxis. Here we describe what is known about these genes. We also discuss the novel spectral properties of the phytochrome-like photoreceptor PixJ1 in Synechocystis, that is essential for positive phototaxis and which has revealed the existence of a new group of chromophore-binding proteins in cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. G. I. McFadden, Primary and secondary endosymbiosis and the origin of plastids, J. Phycol., 2001, 37, 951–959.

    Article  Google Scholar 

  2. B. Diehn, M. Feinleib, W. Haupt, E. Hildebrand, F. Lenci, W. Nultsch, Terminology of behavioral responses of motile microorganisms, Photochem. Photobiol., 1977, 26, 559–560.

    Article  Google Scholar 

  3. D. P. Häder, Photosensory behavior in procaryotes, Microbiol. Rev., 1987, 51, 1–21.

    Article  PubMed  PubMed Central  Google Scholar 

  4. J. B. Waterbury, J. M. Willey, D. G. Franks, F. W. Valois, S. W. Watson, A cyanobacterium capable of swimming motility, Science, 1985, 230, 74–76.

    Article  CAS  PubMed  Google Scholar 

  5. J. Henrichsen, Bacterial surface translocation: a survey and a classification, Bacteriol. Rev., 1972, 36, 478–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. W. O. Ng, A. R. Grossman, D. Bhaya, Multiple light inputs control phototaxis in Synechocystis sp. strain PCC6803, J. Bacteriol., 2003, 185, 1599–1607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. R. Y. Stanier, R. Kunisawa, M. Mandel, G. Cohen-Bazire, Purification and properties of unicellular blue-green algae (order Chroococcales), Bacteriol. Rev., 1971, 35, 171–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. L. N. Halfen, R. W. Castenholz, Gliding in a blue-green alga: a possible mechanism, Nature, 1970, 225, 1163–1165.

    Article  CAS  PubMed  Google Scholar 

  9. E. Hoiczyk, W. Baumeister, The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria, Curr. Biol., 1998, 8, 1161–1168.

    Article  CAS  PubMed  Google Scholar 

  10. E. Hoiczyk, Gliding motility in cyanobacterial: observations and possible explanations, Arch. Microbiol., 2000, 174, 11–17.

    Article  CAS  PubMed  Google Scholar 

  11. E. Hoiczyk, Structural and biochemical analysis of the sheath of Phormidium uncinatum, J. Bacteriol., 1998, 180, 3923–3932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. D. G. Adams, D. Ashworth, B. Nelmes, Fibrillar array in the cell wall of a gliding filamentous cyanobacterium, J. Bacteriol., 1999, 181, 884–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. E. Hoiczyk, W. Baumeister, Oscillin, an extracellular, Ca2+-binding glycoprotein essential for the gliding motility of cyanobacteria, Mol. Microbiol., 1997, 26, 699–708.

    Article  CAS  PubMed  Google Scholar 

  14. S. P. Adhikary, J. Weckesser, U. J. Jürgens, J. R. Golecki, D. Borowiak, Isolation and chemical characterization of the sheath from the cyanobacterium Chroococcus minutus SAG B.41.79., J. Gen. Microbiol., 1986, 132, 2595–2599.

    CAS  Google Scholar 

  15. M. Pritzer, J. Weckesser, U. J. Jürgens, Sheath and outer membrane components from the cyanobacterium Fischerella sp. PCC 7414, Arch. Microbiol., 1989, 153, 7–11.

    Article  CAS  Google Scholar 

  16. B. Brahamsha, An abundant cell-surface polypeptide is required for swimming by the nonflagellated marine cyanobacterium Synechococcus, Proc. Natl. Acad. Sci. USA, 1996, 93, 6504–6509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. T. Kaneko, S. Sato, H. Kotani, A. Tanaka, E. Asamizu, Y. Nakamura, N. Miyajima, M. Hirosawa, M. Sugiura, S. Sasamoto, T. Kimura, T. Hosouchi, A. Matsuno, A. Muraki, N. Nakazaki, K. Naruo, S. Okumura, S. Shimpo, C. Takeuchi, T. Wada, A. Watanabe, M. Yamada, M. Yasuda, S. Tabata, Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions, DNA Res., 1996, 3, 109–136.

    Article  CAS  PubMed  Google Scholar 

  18. A. Kamei, T. Ogawa, M. Ikeuchi, Identification of a novel gene (slr2031) involved in high-light resistance in the cyanobacterium Synechocystis sp. PCC 6803, Photosynthesis: Mechanism and Effects, 1998 2901–2905.

    Chapter  Google Scholar 

  19. D. Bhaya, N. Watanabe, T. Ogawa, A. R. Grossman, The role of an alternative sigma factor in motility and pilus formation in the cyanobacterium Synechocystis sp. strain PCC6803, Proc. Natl. Acad. Sci. USA, 1999, 96, 3188–3193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. D. Bhaya, N. R. Bianco, D. Bryant, A. Grossman, Type IV pilus biogenesis and motility in the cyanobacterium Synechocystis sp. PCC6803, Mol. Microbiol., 2000, 37, 941–951.

    Article  CAS  PubMed  Google Scholar 

  21. S. Yoshihara, X. Geng, S. Okamoto, K. Yura, T. Murata, M. Go, M. Ohmori, M. Ikeuchi, Mutational analysis of genes involved in pilus structure, motility and transformation competency in the unicellular motile cyanobacterium Synechocystis sp. PCC 6803, Plant Cell Physiol., 2001, 42, 63–73.

    Article  CAS  PubMed  Google Scholar 

  22. D. Bhaya, A. Takahashi, P. Shahi, A. R. Grossman, Novel motility mutants of Synechocystis strain PCC 6803 generated by in vitro transposon mutagenesis, J. Bacteriol., 2001, 183, 6140–6143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. J. S. Mattick, C. B. Whitchurch, R. A. Alm, The molecular genetics of type-4 fimbriae in Pseudomonas aeruginosa–a review, Gene, 1996, 179, 147–155.

    Article  PubMed  Google Scholar 

  24. P. A. Sastry, J. R. Pearlstone, L. B. Smillie, W. Paranchych, Amino acid sequence of pilin isolated from Pseudomonas aeruginosa PAK, FEBS Lett., 1983, 151, 253–256.

    Article  CAS  PubMed  Google Scholar 

  25. A. M. Spormann, Gliding motility in bacteria: insights from studies of Myxococcus xanthus, Microbiol. Mol. Biol. Rev., 1999, 63, 621–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. M. Koomey, Competence for natural transformation in Neisseria gonorrhoeae: a model system for studies of horizontal gene transfer, APMIS Suppl., 1998, 84, 56–61.

    Article  CAS  PubMed  Google Scholar 

  27. D. N. Nunn, S. Lory, Product of the Pseudomonas aeruginosa gene pilD is a prepilin leader peptidase, Proc. Natl. Acad. Sci. USA, 1991, 88, 3281–3285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. M. S. Strom, S. Lory, Structure-function and biogenesis of the type IV pili, Annu. Rev. Microbiol., 1993, 47, 565–596.

    Article  CAS  PubMed  Google Scholar 

  29. J. M. Skerker, H. C. Berg, Direct observation of extension and retraction of type IV pili, Proc. Natl. Acad. Sci. USA, 2001, 98, 6901–6904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J. S. Mattick, Type IV pili and twitching motility, Annu. Rev. Microbiol., 2002, 56, 289–314.

    Article  CAS  PubMed  Google Scholar 

  31. S. L. Bardy, S. Y. Ng, K. F. Jarrell, Prokaryotic motility structures, Microbiol., 2003, 149, 295–304.

    Article  CAS  Google Scholar 

  32. M. J. McBride, Bacterial gliding motility: multiple mechanisms for cell movement over surfaces, Annu. Rev. Microbiol., 2001, 55, 49–75.

    Article  CAS  PubMed  Google Scholar 

  33. S. Yoshihara, X. Geng, M. Ikeuchi, pilG gene cluster and split pilL genes involved in pilus biogenesis, motility and genetic transformation in the cyanobacterium Synechocystis sp. PCC 6803, Plant Cell Physiol., 2002, 43, 513–521.

    Article  CAS  PubMed  Google Scholar 

  34. H. Yoshimura, S. Yoshihara, S. Okamoto, M. Ikeuchi, M. Ohmori, A cAMP receptor protein, SYCRP1, is responsible for the cell motility of Synechocystis sp. PCC 6803, Plant Cell Physiol., 2002, 43, 460–463.

    Article  CAS  PubMed  Google Scholar 

  35. S. Okamoto, M. Ohmori, The cyanobacterial PilT protein responsible for cell motility and transformation hydrolyzes ATP, Plant Cell Physiol, 2002, 43, 1127–1136.

    Article  CAS  PubMed  Google Scholar 

  36. S. S. Wu, J. Wu, D. Kaiser, The Myxococcus xanthus pilT locus is required for social gliding motility although pili are still produced, Mol. Microbiol., 1997, 23, 109–121.

    Article  CAS  PubMed  Google Scholar 

  37. M. Wolfgang, P. Lauer, H. S. Park, L. Brossay, J. Hebert, M. Koomey, PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae, Mol. Microbiol., 1998, 29, 321–330.

    Article  CAS  PubMed  Google Scholar 

  38. C. B. Whitchurch, M. Hobbs, S. P. Livingston, V. Krishnapillai, J. S. Mattick, Characterisation of a Pseudomonas aeruginosa twitching motility gene and evidence for a specialised protein export system widespread in eubacteria, Gene, 1991, 101, 33–44.

    Article  CAS  PubMed  Google Scholar 

  39. C. B. Whitchurch, J. S. Mattick, Characterization of a gene, pilU, required for twitching motility but not phage sensitivity in Pseudomonas aeruginosa, Mol. Microbiol., 1994, 13, 1079–1091.

    Article  CAS  PubMed  Google Scholar 

  40. P. R. Martin, A. A. Watson, T. F. McCaul, J. S. Mattick, Characterization of a five-gene cluster required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa, Mol. Microbiol., 1995, 16, 497–508.

    Article  CAS  PubMed  Google Scholar 

  41. D. Nunn, S. Bergman, S. Lory, Products of three accessory genes, pilB, pilC, and pilD, are required for biogenesis of Pseudomonas aeruginosa pili, J. Bacteriol., 1990, 172, 2911–2919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. W. Bitter, M. Koster, M. Latijnhouwers, H. de Cock, J. Tommassen, Formation of oligomeric rings by XcpQ and PilQ, which are involved in protein transport across the outer membrane of Pseudomonas aeruginosa, Mol. Microbiol., 1998, 27, 209–219.

    Article  CAS  PubMed  Google Scholar 

  43. T. Tonjum, D. A. Caugant, S. A. Dunham, M. Koomey, Structure and function of repetitive sequence elements associated with a highly polymorphic domain of the Neisseria meningitidis PilQ protein, Mol. Microbiol., 1998, 29, 111–124.

    Article  CAS  PubMed  Google Scholar 

  44. M. S. Strom, D. N. Nunn, S. Lory, A single bifunctional enzyme, PilD, catalyzes cleavage and N-methylation of proteins belonging to the type IV pilin family, Proc. Natl. Acad. Sci. USA, 1993, 90, 2404–2408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. S. Yoshihara, F. Suzuki, H. Fujita, X. X. Geng, M. Ikeuchi, Novel putative photoreceptor and regulatory genes required for the positive phototactic movement of the unicellular motile cyanobacterium Synechocystis sp. PCC 6803, Plant Cell Physiol., 2000, 41, 1299–1304.

    Article  CAS  PubMed  Google Scholar 

  46. D. Bhaya, A. Takahashi, A. R. Grossman, Light regulation of type IV pilus-dependent motility by chemosensor-like elements in Synechocystis PCC6803, Proc. Natl. Acad. Sci. USA, 2001, 98, 7540–7545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. A. Darzins, The pilG gene product, required for Pseudomonas aeruginosa pilus production and twitching motility, is homologous to the enteric, single-domain response regulator CheY, J. Bacteriol., 1993, 175, 5934–5944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. A. Darzins, Characterization of a Pseudomonas aeruginosa gene cluster involved in pilus biosynthesis and twitching motility: sequence similarity to the chemotaxis proteins of enterics and the gliding bacterium Myxococcus xanthus, Mol. Microbiol., 1994, 11, 137–153.

    Article  CAS  PubMed  Google Scholar 

  49. S. I. Aizawa, C. S. Harwood, R. J. Kadner, Signaling components in bacterial locomotion and sensory reception, J. Bacteriol., 2000, 182, 1459–1471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. M. Eisenbach, Control of bacterial chemotaxis, Mol. Microbiol., 1996, 20, 903–910.

    Article  CAS  PubMed  Google Scholar 

  51. R. E. Silversmith, R. B. Bourret, Throwing the switch in bacterial chemotaxis, Trends Microbiol, 1999, 7, 16–22.

    Article  CAS  PubMed  Google Scholar 

  52. J. Liang, L. Scappino, R. Haselkorn, The patA gene product, which contains a region similar to CheY of Escherichia coli, controls heterocyst pattern formation in the cyanobacterium Anabaena 7120, Proc. Natl. Acad. Sci. USA, 1992, 89, 5655–5659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. A. M. Bilwes, L. A. Alex, B. R. Crane, M. I. Simon, Structure of CheA, a signal-transducing histidine kinase, Cell, 1999, 96, 131–141.

    Article  CAS  PubMed  Google Scholar 

  54. L. Mourey, S. Da Re, J. D. Pedelacq, T. Tolstykh, C. Faurie, V. Guillet, J. B. Stock, J. P. Samama, Crystal structure of the CheA histidine phosphotransfer domain that mediates response regulator phosphorylation in bacterial chemotaxis, J. Biol. Chem., 2001, 276, 31074–31082.

    Article  CAS  PubMed  Google Scholar 

  55. A. Kamei, T. Yuasa, K. Orikawa, X. X. Geng, M. Ikeuchi, A eukaryotic-type protein kinase, SpkA, is required for normal motility of the unicellular Cyanobacterium Synechocystis sp. strain PCC 6803, J. Bacteriol., 2001, 183, 1505–1510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. A. Kamei, S. Yoshihara, T. Yuasa, X. Geng, M. Ikeuchi, Biochemical and functional characterization of a eukaryotic-type protein kinase, SpkB, in the cyanobacterium, Synechocystis sp. PCC 6803, Curr. Microbiol., 2003, 46, 296–301.

    Article  CAS  PubMed  Google Scholar 

  57. A. Kamei, T. Yuasa, X. Geng, M. Ikeuchi, Biochemical examination of the potential eukaryotic-type protein kinase genes in the complete genome of the unicellular cyanobacterium Synechocystis sp. PCC 6803, DNA Res., 2002, 9, 71–78.

    Article  CAS  PubMed  Google Scholar 

  58. Y. H. Kim, Y. M. Park, S. J. Kim, Y. I. Park, J. S. Choi, Y. H. Chung, The role of Slr1443 in pilus biogenesis in Synechocystis sp. PCC 6803: involvement in post-translational modification of pilins, Biochem. Biophys. Res. Commun., 2004, 315, 179–186.

    Article  CAS  PubMed  Google Scholar 

  59. K. Terauchi, M. Ohmori, An adenylate cyclase, Cya1, regulates cell motility in the cyanobacterium Synechocystis sp. PCC 6803, Plant Cell Physiol., 1999, 40, 248–251.

    Article  CAS  PubMed  Google Scholar 

  60. H. Yoshimura, S. Yanagisawa, M. Kanehisa, M. Ohmori, Screening for the target gene of cyanobacterial cAMP receptor protein SYCRP1, Mol. Microbiol., 2002, 43, 843–853.

    Article  CAS  PubMed  Google Scholar 

  61. H. Yoshimura, S. Yanagisawa, T. Hisabori and M. Ohmori, Molecular physiology of cAMP signaling cascade in Synechocystis PCC 6803, in the 11th International Symposium on Phototrophic Prokaryotes, Tokyo, 2003, p. 182.

    Google Scholar 

  62. A. Wilde, B. Fiedler, T. Borner, The cyanobacterial phytochrome Cph2 inhibits phototaxis towards blue light, Mol. Microbiol., 2002, 44, 981–988.

    Article  CAS  PubMed  Google Scholar 

  63. L. Aravind, C. P. Ponting, The GAF domain: an evolutionary link between diverse phototransducing proteins, Trends Biochem. Sci., 1997, 22, 458–459.

    Article  CAS  PubMed  Google Scholar 

  64. P. H. Quail, The phytochromes: a biochemical mechanism of signaling in sight?, Bioessays, 1997, 19, 571–579.

    Article  CAS  PubMed  Google Scholar 

  65. M. Ohmori, M. Ikeuchi, N. Sato, P. Wolk, T. Kaneko, T. Ogawa, M. Kanehisa, S. Goto, S. Kawashima, S. Okamoto, H. Yoshimura, H. Katoh, T. Fujisawa, S. Ehira, A. Kamei, S. Yoshihara, R. Narikawa, S. Tabata, Characterization of genes encoding multi-domain proteins in the genome of the filamentous nitrogen-fixing Cyanobacterium Anabaena sp. strain PCC 7120, DNA Res, 2001, 8, 271–284.

    Article  CAS  PubMed  Google Scholar 

  66. S. Yoshihara, M. Katayama, X. Geng and M. Ikeuchi, Cyanobacterial phytochrome-like PixJ1 holoprotein shows novel reversible photoconversion between blue- and green-absorbing forms, submitted.

  67. J. C. Lagarias, H. Rapoprt, Chromopeptides from phytochrome. The structure and linkage of the Pr form of the phytochrome chromophore, J. Am. Chem. Soc., 1980, 102, 4821–4828.

    Article  CAS  Google Scholar 

  68. S. J. Davis, A. V. Vener, R. D. Vierstra, Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacteria, Science, 1999, 286, 2517–2520.

    Article  CAS  PubMed  Google Scholar 

  69. S. I. Beale, Biosynthesis of open-chain tetrapyrroles in plants, algae, and cyanobacteria, Ciba Found. Symp., 1994, 180, 156–168 (discussion 168–171).

    CAS  PubMed  Google Scholar 

  70. M. J. Terry, M. T. McDowell, J. C. Lagarias, (3Z)- and (3E)-phytochromobilin are intermediates in the biosynthesis of the phytochrome chromophore, J. Biol. Chem., 1995, 270, 11111–11118.

    Article  CAS  PubMed  Google Scholar 

  71. T. Hübschmann, T. Börner, E. Hartmann, T. Lamparter, Characterization of the Cph1 holo-phytochrome from Synechocystis sp. PCC 6803, Eur. J. Biochem., 2001, 268, 2055–2063.

    Article  PubMed  Google Scholar 

  72. J. Cornejo, S. I. Beale, Phycobilin biosynthetic reactions in extract of cyanobacteria, Photosynth. Res., 1997, 51, 223–230.

    Article  CAS  Google Scholar 

  73. N. Frankenberg, K. Mukougawa, T. Kohchi, J. C. Lagarias, Functional genomic analysis of the HY2 family of ferredoxin-dependent bilin reductases from oxygenic photosynthetic organisms, Plant Cell, 2001, 13, 965–978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. W. A. Sidler, in The Molecular Biology of Cyanobacteria, ed. D. A. Bryant, Kluwer Academic Publishers, 1994, pp. 139–216.

  75. K. H. Zhao, M. G. Deng, M. Zheng, M. Zhou, A. Parbel, M. Storf, M. Meyer, B. Strohmann, H. Scheer, Novel activity of a phycobiliprotein lyase: both the attachment of phycocyanobilin and the isomerization to phycoviolobilin are catalyzed by the proteins PecE and PecF encoded by the phycoerythrocyanin operon, FEBS Lett., 2000, 469, 9–13.

    Article  CAS  PubMed  Google Scholar 

  76. M. Storf, A. Parbel, M. Meyer, B. Strohmann, H. Scheer, M. G. Deng, M. Zheng, M. Zhou, K. H. Zhao, Chromophore attachment to biliproteins: specificity of PecE/PecF, a lyase-isomerase for the photoactive 3(1)-cys-alpha 84-phycoviolobilin chromophore of phycoerythrocyanin, Biochemistry, 2001, 40, 12444–12456.

    Article  CAS  PubMed  Google Scholar 

  77. S. W. Ryter, R. M. Tyrrell, The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties, Free Radical Biol. Med., 2000, 28, 289–309.

    Article  CAS  Google Scholar 

  78. W. M. Schluchter, A. N. Glazer, Characterization of cyanobacterial biliverdin reductase. Conversion of biliverdin to bilirubin is important for normal phycobiliprotein biosynthesis, J. Biol. Chem., 1997, 272, 13562–13569.

    Article  CAS  PubMed  Google Scholar 

  79. J. S. Choi, Y. H. Chung, Y. J. Moon, C. Kim, M. Watanabe, P. S. Song, C. O. Joe, L. Bogorad, Y. M. Park, Photomovement of the gliding cyanobacterium Synechocystis sp. PCC 6803, Photochem. Photobiol., 1999, 70, 95–102.

    Article  CAS  PubMed  Google Scholar 

  80. T. Kaneko, Y. Nakamura, C. P. Wolk, T. Kuritz, S. Sasamoto, A. Watanabe, M. Iriguchi, A. Ishikawa, K. Kawashima, T. Kimura, Y. Kishida, M. Kohara, M. Matsumoto, A. Matsuno, A. Muraki, N. Nakazaki, S. Shimpo, M. Sugimoto, M. Takazawa, M. Yamada, M. Yasuda, S. Tabata, Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120, DNA Res., 2001, 8, 205–213; 227–253.

    Article  CAS  PubMed  Google Scholar 

  81. J. C. Meeks, E. L. Campbell, M. L. Summers, F. C. Wong, Cellular differentiation in the cyanobacterium Nostoc punctiforme, Arch. Microbiol., 2002, 178, 395–403.

    Article  CAS  PubMed  Google Scholar 

  82. T. Damerval, G. Guglielmi, J. Houmard, N. T. De Marsac, Hormogonium differentiation in the cyanobacterium Calothrix: a photoregulated developmental process, Plant Cell, 1991, 3, 191–201.

    Article  PubMed  PubMed Central  Google Scholar 

  83. B. Brahamsha, Non-flagellar swimming in marine Synechococcus, J. Mol. Microbiol. Biotechnol., 1999, 1, 59–62.

    CAS  PubMed  Google Scholar 

  84. E. Giraud, J. Fardoux, N. Fourrier, L. Hannibal, B. Genty, P. Bouyer, B. Dreyfus, A. Vermeglio, Bacteriophytochrome controls photosystem synthesis in anoxygenic bacteria, Nature, 2002, 417, 202–205.

    Article  CAS  PubMed  Google Scholar 

  85. S. H. Bhoo, S. J. Davis, J. Walker, B. Karniol, R. D. Vierstra, Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore, Nature, 2001, 414, 776–779.

    Article  CAS  PubMed  Google Scholar 

  86. T. Lamparter, N. Michael, F. Mittmann, B. Esteban, Phytochrome from Agrobacterium tumefaciens has unusual spectral properties and reveals an N-terminal chromophore attachment site, Proc. Natl. Acad. Sci. USA, 2002, 99, 11628–11633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. D. M. Kehoe, A. R. Grossman, New classes of mutants in complementary chromatic adaptation provide evidence for a novel four-step phosphorelay system, J. Bacteriol., 1997, 179, 3914–3921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. A. Wilde, Y. Churin, H. Schubert, T. Börner, Disruption of a Synechocystis sp. PCC 6803 gene with partial similarity to phytochrome genes alters growth under changing light qualities, FEBS Lett., 1997, 406, 89–92.

    Article  CAS  PubMed  Google Scholar 

  89. O. Schmitz, M. Katayama, S. B. Williams, T. Kondo, S. S. Golden, CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock, Science, 2000, 289, 765–768.

    Article  CAS  PubMed  Google Scholar 

  90. M. Katayama, X. Geng, M. Kobayashi and M. Ikeuchi, Identification of phytochrome-like protein and response regulator that are necessary for the expression of cpcG2 gene in Synechocystis sp. PCC 6803, in the 11th International Symposium on Phototrophic Prokaryotes, Tokyo, 2003, p. 89.

    Google Scholar 

  91. D. M. Kehoe, A. R. Grossman, Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors, Science, 1996, 273, 1409–1412.

    Article  CAS  PubMed  Google Scholar 

  92. K. Terauchi, B. L. Montgomery, A. R. Grossman, J. C. Lagarias, D. M. Kehoe, RcaE is a complementary chromatic adaptation photoreceptor required for green and red light responsiveness, Mol. Microbiol., 2004, 51, 567–577.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shizue Yoshihara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshihara, S., Ikeuchi, M. Phototactic motility in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Photochem Photobiol Sci 3, 512–518 (2004). https://doi.org/10.1039/b402320j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b402320j

Navigation