Skip to main content
Log in

Phytochrome A: functional diversity and polymorphism

  • PPS
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Phytochrome (phy), a 124 kDa biliprotein, mediates plants’ perception of environmental light conditions including quantity, quality and duration of light. The complex phenomenology of phy function is connected with its polymorphism, the major phys being phyA and phyB. PhyA mediates irreversible photoresponses in the very low and high fluence ranges (VLFR and HIR) primarily in the far-red (FR) spectral region, whereas phyB mediates the ‘classical’ R/FR reversible responses in the low fluence range (LFR). This phyA specificity is determined at the level of (i) intramolecular events, (ii) turnover, phyA being light-labile, and (iii) nuclear–cytoplasmic partitioning and interaction with partner proteins. A unique feature of phyA is that two native isoforms, phyA′ and phyA″, comprise it, distinguished by spectroscopic and photochemical properties, localization and abundance in plant tissues, light stability, and other properties. They differ by the post-translational modification at the 6 kDa N-terminus, possibly phosphorylation, phyA′ being phosphorylated and phyA″ dephosphorylated. Both species participate in the light-induced nuclear–cytoplasmic partitioning. The light-labile phyA′ is responsible for de-etiolation (VLFR and HIR modes), whereas the relatively more light-stable phyA″ could be active throughout the whole life cycle. PhyA″ interferes with the action of phyA′ and this interaction may be part of the fine tuning mechanism of the phyA function. Finally, within the phyA′ pool there are different conformers in thermal equilibrium, that differ by the activation and kinetic parameters of the Pr → lumi-R photoreaction. This heterogeneity of phyA may account, at least partially, for the complex dynamics of its photoprocesses and the phenomenology of photoresponses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FL:

full-length phytochrome

FR:

far-red light

FRc:

constant FR

FRp:

pulsed FR

HIR:

high irradience responses

GFP:

green fluorescent protein

LFR:

low fluence responses

lumi-R:

primary product of Pr photoexcitation

NA:

N-terminally truncated phytochrome

PCB:

phycocyanobilin

PΦB:

phytochromobilin

phy:

phytochrome

phyA:

phytochrome A

phyA’ and phyA″:

isoforms of phyA

phyB:

phytochrome B

Pfr:

far-red light-absorbing phy form

Pr:

red light-absorbing phy form

Pr’:

Pr

Pr*:

Pr cycled through Pfr

R:

red light

Rc:

constant R

Rp:

pulsed R

VLFR:

very low fluence responses

WT:

wild type.

References

  1. Special issue, Photomorphogenesis, Plant Cell Environ., ed. H. Smith, 1997, 20, 657–844.

  2. A. Cashmore, J. A. Jarillo, Y. J. Wu and D. Liu, Cryptochromes: blue light receptors for plants and animals, Science, 1999, 284, 760–765.

    Article  CAS  PubMed  Google Scholar 

  3. A. Batschauer, Light perception in higher plants, Cell Mol. Life Sci., 1999, 55, 153–166.

    Article  CAS  PubMed  Google Scholar 

  4. J. M. Christie and W. R. Briggs, Blue light sensing in higher plants, J. Biol. Chem., 2001, 276, 11457–11460.

    Article  CAS  PubMed  Google Scholar 

  5. M. Furuya and E. Schäfer, Photoperception and signaling of induction reactions by different phytochromes, Trends Plant Sci., 1996, 1, 301–307.

    Article  Google Scholar 

  6. H. Smith, Phytochromes and light signal perception by plants–an emerging synthesis, Nature, 2000, 407, 585–591.

    Article  CAS  PubMed  Google Scholar 

  7. P. H. Quail, The phytochrome family: Dissection of functional roles and signaling pathways among family members, Philos. Trans. R. Soc. London, Ser. B, 1998, 14, 257–271.

    Google Scholar 

  8. P. H. Quail, Phytochrome photosensory signaling networks, Nat. Rev. Mol. Cell Biol., 2002, 3, 85–93.

    Article  CAS  PubMed  Google Scholar 

  9. J. J. Casal, Phytochromes, cryptochromes, phototropin: Photoreceptor interactions in plants, Photochem. Photobiol., 2000, 71, 1–11.

    Article  CAS  PubMed  Google Scholar 

  10. M. M. Neff, C. Fankhauser and J. Chory, Light: an indicator of time and place, Genes Dev., 2000, 14, 257–271.

    CAS  PubMed  Google Scholar 

  11. C. Fankhauser, The phytochromes, a family of red/far-red absorbing photoreceptors, J. Biol. Chem., 2001, 276, 11453–11456.

    Article  CAS  PubMed  Google Scholar 

  12. P.-S. Song, Inter-domain signal transduction within the phytochromes, J. Biochem. Mol. Biol., 1999, 32, 215–225.

    CAS  Google Scholar 

  13. C.-M. Park, S.-H. Bhoo and P.-S. Song, Interdomain crosstalk in the phytochrome molecules, Semin. Cell Dev. Biol., 2000, 11, 449–456.

    Article  CAS  PubMed  Google Scholar 

  14. P. H. Quail, An emerging molecular map of the phytochromes, Plant Cell Environ., 1997, 20, 657–665.

    Article  CAS  Google Scholar 

  15. T. Matsushita, M. Mochizuki, A. Nagatani, Dimers of the N-terminal domain of phytochrome B are functional in the nucleus, Nature, 2003, 424, 571–574.

    Article  CAS  PubMed  Google Scholar 

  16. W. Gärtner and S. E. Braslavsky, The phytochromes: spectroscopy and function, in Photoreceptors and Light Signalling, ed. A. Batschauer, Royal Society of Chemistry, Cambridge, in press.

  17. V. A. Sineshchekov, Photobiophysics and photobiochemistry of the heterogeneous phytochrome system, Biochim. Biophys. Acta, 1995, 1228, 125–164.

    Article  Google Scholar 

  18. T. Shinomura, K. Uchida and M. Furuya, Elementary responses of photoperception by phytochrome A for high irradiance response of hypocotyl elongation in Arabidopsis thaliana, Plant Physiol., 2000, 122, 147–156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. K.-C. Yeh and J. C. Lagarias, Eukaryotic phytochromes: Light-regulated serine/threonine protein kinases with histidine kinase ancestry, Proc. Natl. Acad. Sci. USA, 1998, 95, 13976–13981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. V. N. Lapko, X. Y. Jiang, D. L. Smith and P. S. Song, Mass spectrometric characterization of oat phytochrome A: isoforms and posttranslational modifications, Protein Sci., 1999, 8, 1032–1044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. H. G. Neuhaus, C. Bowler, R. Kern and N. H. Chua, Calcium/calmodulin-dependent and -independent phytochrome signal transduction pathways, Cell, 1993, 73, 937–952.

    Article  CAS  PubMed  Google Scholar 

  22. H. Okamoto, M. Matsui and X. W. Deng, Overexpression of the heterotrimeric G-protein alpha-subunit enhances phytochrome-mediated inhibition of hypocotyl elongation in Arabidopsis, Plant Cell, 2001, 13, 1639–1652.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. H. Guo, T. Mockler, H. Duong and C. Lin, SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction, Science, 2001, 291, 487–490.

    Article  CAS  PubMed  Google Scholar 

  24. R. E. Kendrick and G. H. M. Kronenberg, Photomorphogenesis in Plants, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2nd edn., 1994.

    Book  Google Scholar 

  25. R. Yamaguchi, M. Nakamura, N. Mochizuki, S. A. Kay and A. Nagatani, Light-dependent translocation of a phytochrome B-GFP fusion protein to the nucleus in transgenic Arabidopsis, J. Cell Biol., 1999, 145, 437–445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. F. Nagy, S. Kircher and E. Schäfer, Intracellular trafficking of photoreptors during light-induced signal transduction in plants, J. Cell Sci., 2000, 114, 475–480.

    Article  Google Scholar 

  27. M. Ni, J. M. Tepperman and P. H. Quail, PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel helix–loop–helix protein, Cell, 1998, 95, 657–667.

    Article  CAS  PubMed  Google Scholar 

  28. J. F. Martínez-García, E. Huq, P. H. Quail, Direct targeting of light signals to a promoter element-bound transcriptional factor, Science, 2000, 288, 859–863.

    Article  PubMed  Google Scholar 

  29. Y. Zhu, J. M. Tepperman, C. D. Fairchild and P. H. Quail, Phytochrome B binds with greater apparent affinity than phytochrome A to the basic helix–loop–helix factor PIF3 in a reaction requiring the PAS domain of PIF3, Proc. Natl. Acad. Sci. USA, 2000, 97, 13419–13424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. P. H. Quail, Phytochrome-interacting factors, Semin. Cell Dev. Biol., 2000, 11, 457–466.

    Article  CAS  PubMed  Google Scholar 

  31. X.-W. Deng and P. H. Quail, Signaling in light-controlled development, Semin. Cell Dev. Biol., 1999, 10, 121–129.

    Article  CAS  PubMed  Google Scholar 

  32. C. Fankhauser and J. Chory, Light receptor kinases in plants!, Curr. Biol., 1999, 9, R123–R126.

    Article  CAS  PubMed  Google Scholar 

  33. H. Wang and X. W. Deng, Phytochrome Signaling Mechanism, The Arabidopsis Book ed. C. R. Somerville and E. M. Meyerowitz, American Society of Plant Biologists, Rockville, MD, 2002, pp. 1–30, DOI: 10.1199/tab.0009, http://www.aspb.org/publications/arabidopsis/.

    Google Scholar 

  34. H. Wang and X. W. Deng, Dissecting the phytochrome A-dependent signaling network in higher plants, Trends Plant Sci., 2003, 8, 172–178.

    Article  CAS  PubMed  Google Scholar 

  35. P. D. Cerdán, R. J. Staneloni, J. J. Casal and R. A. Sánchez, A 146 bp fragment of the tobacco Lhcb 1*2 promoter confers very-low-fluence, low-fluence and high-irradience responses of phytochrome to a minimal CaMV 35S promoter, Plant Mol. Biol., 1997, 33, 245–255.

    Article  PubMed  Google Scholar 

  36. J. Chory, M. Chatterjee, R. K. Cook, T. Elich, C. Fanhauserr, J. Li, P. Nagpal, M. Neff, A. Pepper, D. Poole, J. Reed and V. Vitart, From seed germination to flowering, light controls plant development via the pigment phytochrome, Proc. Natl. Acad. Sci. USA, 1996, 93, 12066–12071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. J. Brockman and E. Schäfer, Analysis of Pfr destruction in Amarantus caudatus L.–evidence for two pools of phytochrome, Photochem. Photobiol., 1982, 35, 555–558.

    Article  Google Scholar 

  38. L. H. Pratt, Distribution and localization of phytochrome within the plant, in Photomorphogenesis in Plants ed. R. E. Kendrick and G. H. M. Kronenberg, Martinus Nijhoff, Dordrecht, 1994, pp. 163–186.

    Chapter  Google Scholar 

  39. J. G. Tokuhisa, S. M. Daniels and P. H. Quail, Phytochrome in green tissues: spectral and immunochemical evidence for two distinct molecular species of phytochrome in light-grown, Avena sativa L., Planta, 1985, 164, 321–332.

    Article  CAS  PubMed  Google Scholar 

  40. V. A. Sineshchekov and A. V. Sineshchekov, Fluorescence and absorption investigations of phytochrome in the cells of etiolated seedlings, Fiziol. Rast. (Russ.), 1987, 34, 730–741.

    CAS  Google Scholar 

  41. V. A. Sineshchekov and A. V. Sineshchekov, Fluorescence of phytochrome in the cells of dark-grown plants and its connection with the phototransformations of the pigment, Photochem. Photobiol., 1989, 49, 325–330.

    Article  CAS  Google Scholar 

  42. R. A. Sharrock and P. H. Quail, Novel phytochrome sequences in Arabiddopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family, Genes Dev., 1989, 3, 1745–1757.

    Article  CAS  PubMed  Google Scholar 

  43. P. H. Quail, Phytochrome. A light-activated molecular switch that regulates plant gene expression, Ann. Rev. Genet., 1991, 25, 389–409.

    Article  CAS  PubMed  Google Scholar 

  44. R. C. Clough and R. D. Vierstra, Phytochrome degradation, Plant Cell Environ., 1997, 20, 713–721.

    Article  CAS  Google Scholar 

  45. J. J. Casal and R. A. Sánchez, M. J. Yanovsky, The function of phytochrome A, Plant Cell Environ., 1997, 20, 813–819.

    Article  CAS  Google Scholar 

  46. J. J. Casal, R. A. Sánchez and J. F. Botto, Modes of action of phytochromes, J. Exp. Bot., 1998, 49, 127–138.

    CAS  Google Scholar 

  47. J. J. Casal, S. J. Davis, D. Kirchenbauer, A. Viczian, M. J. Yanovsky, R. C. Clough, S. Kircher, E. T. Jordan-Beebe, E. Schäfer, F. Nagy and R. D. Vierstra, The serine-rich N-terminal domain of oat phytochrome A helps regulate light responses and subnuclear localization of the photoreceptor, Plant Physiol., 2002, 129, 1127–1137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. G. C. Whitelam and P. F. Devlin, Roles of different phytochromes in Arabidopsis photomorphogenesis, Plant Cell Environ, 1997, 20, 752–758.

    Article  CAS  Google Scholar 

  49. P. H. Quail, M. T. Boylan, B. M. Parks, T. W. Short, Y. Xu and D. Wagner, Phytochromes: photosensory perception and signal transduction, Science, 1995, 268, 675–680.

    Article  CAS  PubMed  Google Scholar 

  50. T. Shinomura, A. Nagatani, H. Hanzawa, M. Kubota, M. Watanabe and M. Furuya, Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana, Proc. Natl. Acad. Sci. USA, 1996, 93, 8129–8133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. J. F. Botto, R. A. Sánchez, G. C. Whitelam and J. J. Casal, Phytochrome A mediates the promotion of seed germination by very low fluences of light and canopy shade light in Arabidopsis, Plant Physiol., 1996, 110, 439–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. A. C. McCormac, H. Smith and G. C. Whitelam, Photoregulation of germination in seed of transgenic lines of tobacco and Arabidopsis which express an introduced cDNA encoding phytochrome A or phytochrome B, Planta, 1993, 191, 386–393.

    Article  CAS  Google Scholar 

  53. J. J. Casal and R. A. Sánchez, Phytochromes and seed germination, Seed Sci. Res., 1998, 8, 317–329.

    Article  CAS  Google Scholar 

  54. M. A. Mazzella, T. M. Alconada Magliano and J. J. Casal, Dual effect of phytochrome A on hypocotyl growth under continuous red light, Plant Cell Environ., 1997, 20, 261–267.

    Article  CAS  Google Scholar 

  55. S. Jackson and B. Thomas, Photoreceptors and signals in the photoperiodic control of developments, Plant Cell Environ., 1997, 20, 790–795.

    Article  CAS  Google Scholar 

  56. H. Smith and G. C. Whitelam, The shade avoidance syndrome: multiple responses mediated by multiple phytochromes, Plant Cell Environ., 1997, 20, 840–844.

    Article  Google Scholar 

  57. R. P. Hangarter, Gravity, light and plant form, Plant Cell Environ., 1997, 20, 796–800.

    Article  CAS  PubMed  Google Scholar 

  58. B. M. Parks, P. H. Quail and R. P. Hangarter, Phytochrome A regulates red-light induction of phototropic enhancement in Arabidopsis, Plant Physiol., 1996, 110, 155–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. A. K. Janoudi, W. R. Gordon, D. Wagner, P. Quail and K. L. Poff, Multiple phytochromes are involved in red-light-induced enhancement of first positive phototropism in Arabidopsis thaliana, Plant Physiol., 1997, 113, 975–979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. E. Adam, L. Kozma-Bognar, E. Schäfer and F. Nagy, Tobacco phytochromes: genes, structure and expression, Plant Cell Environ., 1997, 20, 678–684.

    Article  CAS  Google Scholar 

  61. J. W. Reed, P. Nagpal, D. S. Poole, M. Furuya and J. Chory, Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development, Plant Cell, 1993, 5, 147–157.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. B. M. Parks and E. P. Spalding, Sequential and coordinated action of phytochromes A and B during Arabidopsis stem growth revealed by kinetic analysis, Proc. Natl. Acad. Sci. USA, 1999, 96, 14142–14146. E. Spalding, personal communication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. M. Boylan and P. H. Quail, Phytochrome A overexpression inhibits hypocotyl elongation in transgenic Arabidopsis, Proc. Natl. Acad. Sci. USA, 1991, 88, 10806–10810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. R. J. Downs, Photorevesibility of flower initiation, Plant Physiol., 1956, 31, 279–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. J. Chory and M. Furuya, The induction of seed germination in Arabidopsis thaliana is regulated principally by phytochrome B and secondarily by phytochrome A, Plant Physiol., 1994, 104, 363–371.

    Article  PubMed  PubMed Central  Google Scholar 

  66. M. M. Neff and J. Chory, Genetic interaction between phytochrome A, phytochrome B and cryptochrome 1 during Arabidopsis development, Plant Physiol., 1998, 118, 27–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. H. Smith, Y. Xu and P. H. Quail, Antagonistic but complementary actions of phytochromes A and B allow optimum seedling de-etiolation, Plant Physiol., 1997, 114, 637–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. P. F. Devlin, K. J. Halliday, N. P. Harber and G. C. Whitelam, The rosette habit of Arabidopsis thaliana is dependent upon phytochrome action: novel phytochromes control internode elongation and flowering time, Plant J., 1996, 10, 1127–1134.

    Article  CAS  PubMed  Google Scholar 

  69. C. D. Fairchild and P. H. Quail, The phytochromes: Photosensory perception and signal transduction, in Control of plant development: Genes and signals, ed. A. J. Greenland, E. M. Meyerowitz and M. W. Steer, Company of Biologists, Cambridge, 1998, pp. 85–92.

    Google Scholar 

  70. L. Hennig, C. Büche and E. Schäfer, Degradation of phytochrome A and the hight irradience response in Arabidopsis: a kinetic analysis, Plant Cell Environ., 2000, 23, 727–734.

    Article  CAS  Google Scholar 

  71. C. D. Fairchild, M. A. Schumaker and P. H. Quail, HFR1 encodes an atypical bHLH protein that acts in phytochrome A signal transduction, Genes Dev., 2000, 14, 2377–2391.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. D. Wagner, M. Koloszvari and P. H. Quail, Two small spatially distinct regions of phytochrome B are required for efficient signaling rates, Plant Cell, 1996, 8, 859–871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. R. C. Fry, J. Habashi, H. Okamoto and X. W. Deng, Characterization of a strong dominant phytochrome A mutation unique to phytochrome A signal propagation, Plant Physiol., 2002, 130, 457–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. T. Kunkel, K. Tomizawa, R. Kern, M. Furuya and E. Schäfer, In vitro formation of a photoreversible adduct of phycocyanobilin and tobacco apophytochrome B, Eur. J. Biochem., 1993, 215, 587–594.

    Article  CAS  PubMed  Google Scholar 

  75. D. Wagner, J. M. Tepperman and P. H. Quail, Overexpression of phytochrome B induces a short hypocotyl phenotype in transgenic Arabidopsis, Plant Cell, 1991, 3, 1275–1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. W. Gärtner, C. Hill, K. Worm, S. E. Braslavsky and K. Schaffner, Influence of expression system on chromophore binding and preservation of spectral properties in recombinant phytochrome A, Eur. J. Biochem., 1996, 236, 978–983.

    Article  PubMed  Google Scholar 

  77. T. Kunkel, G. Neuhaus, A. Batschauer, N.-H. Chua and E. Schäfer, Functional analysis of yeast-derived phytochrome A and B phycocyanobilin adducts, Plant J., 1996, 10, 625–636.

    Article  CAS  PubMed  Google Scholar 

  78. T. D. Elich and J. Chory, Biochemical characterization of Arabidopsis wild-type and mutant phytochrome B holoproteins, Plant Cell, 1997, 9, 2271–2280.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. A. Remberg, A. Ruddat, S. E. Braslavsky, W. Gärtner and K. Schaffner, Chromophore incorporation, Pr to Pfr kinetics, and Pfr thermal reversion of recombinant N-terminal fragments of phytochrome A and B chromoproteins, Biochemistry, 1998, 37, 9983–9990.

    Article  CAS  PubMed  Google Scholar 

  80. A. Ruddat, P. Schmidt, C. Gatz, S. E. Braslavsky, W. Gärtner and K. Schaffner, Recombinant type A and B phytochromes from potato. Transient absorption spectroscopy, Biochemistry, 1997, 36, 103–111.

    Article  CAS  PubMed  Google Scholar 

  81. T. Kunkel, V. Speth, C. Büche and E. Schäfer, In vivo characterization of phytochrome-phycocyanin adducts in yeast, J. Biol. Chem., 1995, 270, 20193–202000.

    Article  CAS  PubMed  Google Scholar 

  82. M. Furuya, Molecular properties and biogenesis of phytochrome I and II, Adv. Biophys., 1989, 25, 133–167.

    Article  CAS  PubMed  Google Scholar 

  83. V. Sineshchekov, O. Ogorodnikova, A. Thiele and C. Gatz, Fluorescence and photochemical characterization of phytochromes A and B in transgenic potato expressing Arabidopsis phytochrome B, J. Photochem. Photobiol. B: Biol., 2001, 59, 139–146.

    Article  Google Scholar 

  84. H. Hanzawa, T. Shinomura, K. Inomata, T. Kakiuchi, H. Kinoshita, K. Wada and M. Furuya, Structural requirement of bilin chromophore for the photosensory specificity of phytochromes A and B, Proc. Natl. Acad. Sci. USA, 2002, 99, 4725–4729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. M. Ahmad, J. A. Jarillo, O. Smirnova and A. R. Cashmore, The CRY1 blue light receptor of Arabidopsis interacts with phytochrome A in vitro, Mol. Cell, 1998, 1, 939–948.

    Article  CAS  PubMed  Google Scholar 

  86. C. Fankhauser, K.-C. Yeh, J. C. Lagarias, H. Zhang, T. D. Elich and J. Chory, PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis, Science, 1999, 284, 1539–1541.

    Article  CAS  PubMed  Google Scholar 

  87. G. Choi, H. Yi, J. Lee, Y.-K. Kwon, M.-S. Soh, B. Shin, Z. Luka, T.-R. Hahn and P.-S. Song, Phytochrome signaling is mediated through nucleoside diphosphate kinase 2, Nature, 1999, 401, 610–613.

    Article  CAS  PubMed  Google Scholar 

  88. A. Colón-Carmona, D. L. Chen, K.-C. Yeh and S. Abel, Aux/IAA proteins are phosphorylated by phytochrome in vitro, Plant Physiol., 2000, 124, 1728–1738.

    Article  PubMed  PubMed Central  Google Scholar 

  89. D.-H. Kim, J.-G. Kang, S.-S. Yang, K.-S. Chung, P.-S. Song and C.-M. Park, A phytochrome-associated protein phosphatase 2A modulates light signals in flowering time control in Arabidopsis, Plant Cell, 2002, 14, 3043–3056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. T. J. Campbell and E. Liscum, Plant Photobiology 2001, Plant Cell, 2001, 13, 1704–1710.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. L. Kim, S. Kircher, R. Toth, E. Adam, E. Schäfer and F. Nagy, Light-induced nuclear import of phytochrome-A:GFP fusion proteins is differentially regulated in transgenic tobacco and Arabidopsis, Plant J., 2000, 22, 125–134.

    Article  CAS  PubMed  Google Scholar 

  92. J. Stockhaus, A. Nagatani, U. Halfter, S. Kay, M. Furuya and N. H. Chua, Genes Dev., 1992, 6, 2364–2372.

    Article  CAS  PubMed  Google Scholar 

  93. K. Emmler, J. Stockhaus, N.-H. Chua and E. Schäfer, An amino-terminal deletion of rice phytochrome A results in a dominant negative suppression of tobacco phytochrome A activity in transgenic tobacco seedlings, Planta, 1995, 197, 103–110.

    Article  CAS  PubMed  Google Scholar 

  94. E. T. Jordan, J. R. Cherry, J. M. Walker and R. D. Vierstra, The amino-terminus of phytochrome A contains two distinct functional domains, Plant J., 1995, 35, 660–664.

    Google Scholar 

  95. E. T. Jordan, J. M. Marita, R. C. Clough and R. D. Vierstra, Characterization of regions within the N-terminal 6-kilodalton domain of phytochrome A that modulate its biological activity, Plant Physiol., 1997, 115, 693–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. K. Sakamoto and A. Nagatani, Nuclear localization activity of phytochrome B, Plant J., 1996, 10, 859–868.

    Article  CAS  PubMed  Google Scholar 

  97. S. Kircher, L. Kozma-Bognar, L. Kim, E. Adam, K. Harter, E. Schäfer and F. Nagy, Light quality-dependent nuclear import of the plant photoreceptors phytochrome-A and B, Plant Cell, 1999, 11, 1445–1456.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. P. Gil, S. Kircher, E. Adam, E. Bury, L. Kozma-Bognar, E. Schäfer and F. Nagy, Photocontrol of subcellular partitioning of phytochrome-B:GFP fusion protein in tobacco seedlings, Plant J., 2000, 22, 135–145.

    Article  CAS  PubMed  Google Scholar 

  99. E. Huq, B. Al-Sady and P. Quail, Nuclear translocation of the photoreceptor phytochrome B is necessary for its biological function in seedling photomorphogenesis, Plant J., 2003, 35, 660–664.

    Article  CAS  PubMed  Google Scholar 

  100. A. Hisada, H. Hanzava, J. L. Weler, A. Nagatani, J. B. Reid and M. Furuya, Light-induced nuclear translocation of endogenous pea phytochrome A visualized by immunocytochemical procedures, Plant Cell, 2000, 12, 1063–1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. F. Nagy and E. Schäfer, Phytochromes control photomorphogenesis by differentially regulated, interacting signaling pathways in higher plants, Annu. Rev. Plant Biol., 2002, 53, 329–355.

    Article  CAS  PubMed  Google Scholar 

  102. M. J. Yanovsky, J. P. Luppi, D. Kirchbauer, O. B. Ogorodnikova, V. A. Sineshchekov, E. Adam, S. Kircher, R. J. Stanelini, E. Schäfer, F. Nagy, and J. J. Casal, Missense mutation in the PAS2 domain of phytochrome A impairs subnuclear localization and a subset of responses, Plant Cell, 2002, 14, 1591–1603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. K. Eichenberg, T. Kunkel, T. Kretsch, V. Speth and E. Schäfer, In vivo characterization of chimeric phytochromes in yeast, J. Biol. Chem., 1999, 274, 354–359.

    Article  CAS  PubMed  Google Scholar 

  104. R. C. Clough, E. T. Jordan-Beebe, K. N. Lohman, J. M. Marita, J. M. Walker, C. Gatz and R. D. Vierstra, Sequences within both the N- and C-terminal domains of phyA are required for Pfr ubiquitination and degradation, Plant J., 1999, 17, 155–67.

    Article  CAS  PubMed  Google Scholar 

  105. F. R. Cantón and P. H. Quail, Both phyA and phyB mediate light-imposed repression of PHYA gene expression in Arabidopsis, Plant Physiol., 1999, 121, 1207–1216.

    Article  PubMed  PubMed Central  Google Scholar 

  106. M. J. Yanovsky, J. J. Casal and J. P. Luppi, The VLF loci, polymorphic between ecotypes Landsberg erecta and Columbia, dissected two branches of phytochrome A signaling pathways that correspond to the very-low fluence and high-irradience responses of phytochrome, Plant J., 1997, 12, 659–667.

    Article  CAS  PubMed  Google Scholar 

  107. M. J. Yanovsky, G. C. Whitelam and J. J. Casal, fhy3-1 retains inductive responses of phytochrome A, Plant Physiol., 2000, 123, 235–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. J. J. Casal, M. J. Yanovsky and J. P. Luppi, Two photobiological pathways of phytochrome A activity, only one of which shows dominant negative suppression by phytochrome B, Photochem. Photobiol., 2000, 71, 481–486.

    Article  CAS  PubMed  Google Scholar 

  109. P. D. Cerdán, M. J. Yanovsky, F. C. Reymundo, A. Nagatani, R. J. Staneloni, G. C. Whitelam and J. J. Casal, Regulation of phytochrome B signaling by phytochrome A and FHY1 in Arabidopsis thaliana, Plant J., 1999, 18, 499–507.

    Article  PubMed  Google Scholar 

  110. P. D. Cerdán, R. J. Staneloni, J. Ortega, M. M. Bunge, M. J. Rodriguez-Batiller, R. A. Sánchez and J. J. Casal, Sustained but not transient phytochrome A signaling targets a region of an Lhcb1*2 promoter not necessary for phytochrome B action, Plant Cell, 2000, 12, 1203–1211.

    Article  PubMed  PubMed Central  Google Scholar 

  111. M. Boylan, N. Douglas and P. H. Quail, Dominant negative suppression of Arabidopsis photoresponses by mutant phytochrome-A sequences identifies spatially discrete regulatory domains in the photoreceptor, Plant Cell, 1994, 6, 449–460.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. V. Sineshchekov, O. Belyaeva and A. Sudnitsin, Phytochrome A positively regulates biosynthesis of the active protochlorophyllide in dicots under far-red light, J. Photochem. Photobiol., B: Biol., 2004, 74, 47–54.

    Article  CAS  Google Scholar 

  113. P. Lariguet, H. E. Boccalandro, J. M. Alonso, J. R. Ecker, J. Chory, J. J. Casal and C. Fankhauser, A growth regulatory loop that provides homeostasis to phytochrome A signaling, Plant Cell, 2003, 12, 2966–2978.

    Article  CAS  Google Scholar 

  114. M. Ahmad, J. A. Jarillo, O. Smirnova and A. R. Cashmore, The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro, Mol. Cell, 1998, 1, 939–948.

    Article  CAS  PubMed  Google Scholar 

  115. T. Hamasa, N. Tanaka, T. Noguchi, N. Kimura and K. Hasunuma, Phytochrome regulates phosphorylation of a protein with characteristics of a nucleoside diphosphate kinase in the crude membrane fraction from stem sections of etiolated pea seedlings, J. Photochem. Photobiol., B: Biol., 1996, 33, 143–151.

    Article  Google Scholar 

  116. N. Tanaka, T. Ogura, T. Noguchi, H. Hirano, N. Yabe and K. Hasunuma, Phytochrome-mediated light signals are transduced to nucleoside diphoshate kinase in Pisum sativum L. cv. Alaska, J. Photochem. Photobiol., B: Biol., 1998, 45, 113–121.

    Article  CAS  Google Scholar 

  117. T. Ogura, N. Tanaka, N. Yabe, S. Komatsu and K. Hasunuma, Characterization of protein complexes containing nucleoside diphosphate kinase with characteristics of light signal transduction through phytochrome in etiolated pea seedlings, Photochem. Photobiol., 1999, 69, 397–403.

    Article  CAS  Google Scholar 

  118. J. Kim, H. Yi, J. Choi, B. Shin, P.-S. Song and J. Choi, Functional characterization of phytochrome interacting factor 3 in phytochrome mediated light signal transduction, Plant Cell, 2003, 15, 2399–2407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. C. Fankhauser and J. Chory, RSF1, an Arabidopsis locus implicated in phytochrome A signaling, Plant Physiol., 2000, 124, 39–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. M. Hudson, C. Ringli, M. T. Boylan and P. H. Quail, The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling, Genes Dev., 1999, 13, 2017–2027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. U. Hoecker, Y. Xu and P. H. Quail, SPA1: a new genetic locus involved in phytochrome A-specific signal transduction, Plant Cell, 1998, 10, 19–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. U. Hoecker, J. M. Tepperman and P. H. Quail, SPA, a WD-repeat protein specific to phytochrome A signal transduction, Science, 1999, 284, 496–499.

    Article  CAS  PubMed  Google Scholar 

  123. Y. C. Zhou, M. Dieterle, C. Buche and T. Kretsch, The negatively acting factors EID1 and SPA1 have distinct functions in phytochrome A-specific light signaling, Plant Physiol., 2002, 128, 1098–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. U. Hoecker, L. Baumgardt and S. Laubinder, Investigation of the functions of the SPA gene family, Plant Photobiology Meeting, Phillips-Universität, Marburg, 2003, Abstract 6.4.

    Google Scholar 

  125. M. Dieterle, Y.-C. Zhou, E. Schäfer, M. Funk and T. Kretsch, EID1, an F-box protein involved in phytochrome A-specific light signaling, Genes Dev., 2001, 15, 939–944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. X. L. Liu, M. F. Covington, C. Fankhauser, J. Chory and D. R. Wagner, ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway, Plant Cell, 2001, 13, 1293–1304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. C. Fankhauser and D. Staiger, Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock, Planta, 2002, 216, 1–16.

    Article  CAS  PubMed  Google Scholar 

  128. V. A. Sineshchekov, The system of phytochromes: photobiophysics and photobiochemistry in vivo, Membr. Cell Biol., 1998, 12, 691–720.

    CAS  PubMed  Google Scholar 

  129. V. A. Sineshchekov, Phytochromes: molecular structure, photoreceptor process and physiological function, in Concepts in Photobiology: Photosynthesis and Photomorphogenesis, ed. G. S. Singhal, G. Renger, S. K. Sopory, K.-D. Irrgang, and Govindjee, Kluwer Acad. Publ., Boston–Dordrecht–London; Narosa Publ. House, Delhi–Madras–Calcutta–London; 1999, pp. 755–795.

    Chapter  Google Scholar 

  130. V. A. Sineshchekov and A. V. Sineshchekov, Different photoactive states of the red phytochrome form in the cells of etiolated pea and oat seedlings, J. Photochem. Photobiol., B: Biol., 1990, 5, 197–217.

    Article  CAS  Google Scholar 

  131. V. A. Sineshchekov, Two spectroscopically and photochemically distinguishable phytochromes in etiolated seedlings of monocots and dicots, Photochem. Photobiol., 1994, 59, 77–86.

    Article  CAS  Google Scholar 

  132. V. A. Sineshchekov, Evidence for the existence of two phytochrome A populations, J. Photochem. Photobiol., B: Biol., 1995, 28, 53–55.

    Article  CAS  Google Scholar 

  133. V. A. Sineshchekov, S. Frances and M. J. White, Fluorescence and photochemical characterization of phytochrome in de-etiolated pea mutant lip, J. Photochem. Photobiol., B: Biol., 1995, 28, 47–51.

    Article  CAS  Google Scholar 

  134. V. A. Sineshchekov, A. G. Heyer and C. Gatz, Phytochrome states in transgenic potato plants with altered phyA levels, J. Photochem. Photobiol., B: Biol., 1996, 34, 137–142.

    Article  CAS  Google Scholar 

  135. V. A. Sineshchekov, O. B. Ogorodnikova, P. F. Devlin and G. C. Whitelam, Fluorescence spectroscopy and photochemistry of phytochromes A and B in wild-type, mutant and transgenic strains of Arabidopsis thaliana, J. Photochem. Photobiol., B: Biol., 1997, 42, 133–142.

    Article  Google Scholar 

  136. V. A. Sineshchekov, O. B. Ogorodnikova and J. L. Weller, Fluorescence and photochemical properties of phytochromes A and B in etiolated pea seedlings, J. Photochem. Photobiol., B: Biol., 1999, 49, 204–211.

    Article  CAS  Google Scholar 

  137. V. Sineshchekov, L. Koppel’, L. Shlumukov, F. Barro, P. Barcelo, P. Lazzeri and H. Smith, Fluorescence and photochemical properties of phytochromes in wild-type wheat and a transgenic line over-expressing an oat phytochrome A (PHYA) gene: functional implications, Plant Cell Environ., 2001, 24, 289–1297.

    Article  Google Scholar 

  138. V. Sineshchekov, J. Hughes, E. Hartmann and T. Lamparter, Fluorescence and photochemistry of recombinant phytochrome from the cyanobacterium Synechocystis, Photochem. Photobiol., 1998, 67, 263–267.

    Article  CAS  PubMed  Google Scholar 

  139. V. Sineshchekov, L. Koppel’, B. Esteban, J. Hughes and T. Lamparter, Fluorescence and photochemical investigations of the full-length (Cph1) and C-terminally truncated (Cph1delta2) recombinant phytochrome from the cyanobacterium Synechocystis, J. Photochem. Photobiol., B: Biol., 2002, 67, 39–50.

    Article  CAS  Google Scholar 

  140. V. Sineshchekov, L. Koppel’, J. Hughes, T. Lamparter and M. Zeidler, Recombinant phytochrome of the moss Ceratodon purpureus (CP2): fluorescence spectroscopy and photochemistry, J. Photochem. Photobiol., B. Biol., 2000, 56, 145–153.

    Article  CAS  Google Scholar 

  141. L. Koppel’, H. Okamoto, M. Wada and V. Sineshchekov, Phytochrome in transgenic Arabidopsis overexpressing the fern Adiantum capillus-veneris PHY1: fluorescence spectroscopy and photochemistry, Program and Abstracts of European Symposium on Photomorphogenesis, P-25, Freie Universität Berlin, Berlin, March 21–26, 1999.

    Google Scholar 

  142. V. A. Sineshchekov and V. V. Akhobadze, Phytochrome states in etiolated pea seedlings: fluorescence and primary photoreactions at low temperatures, Photochem. Photobiol., 1992, 56, 743–749.

    Article  CAS  Google Scholar 

  143. V. A. Sineshchekov, R. C. Clough, E. T. Jordan-Beebe and R. D. Vierstra, Fluorescence analysis of oat phyA deletion mutants expressed in tobacco suggests that the N-terminal domain determines the photochemical and spectroscopic distinctions between phyA′ and phyA″, Photochem. Photobiol., 1999, 69, 728–732.

    CAS  Google Scholar 

  144. V. Sineshchekov, L. Hennig, T. Lamparter, J. Hughes, W. Gärtner and E. Schäfer, Recombinant phytochrome A in yeast differs by its spectroscopic and photochemical properties from the major phyA′ and is close to the minor phyA″: evidence for post-translational modification of the pigment in plants, Photochem. Photobiol., 2001, 73, 692–696.

    Article  CAS  PubMed  Google Scholar 

  145. L. Koppel’ and V. Sineshchekov, Effect of a non-specific phosphatase inhibitor, PMSF, on the two phyA populations in roots of maize, Plant Photobiology Meeting, Phillips-Universität, Marburg, 2003, Abstract P10.

    Google Scholar 

  146. V. Sineshchekov and C. Fankhauser, PKS1 and PKS2 affect phyA state in etiolated Arabidopsis seedlings, Photochem. Photobiol. Sci., 2004, 3 10.1039/b315431a/.

  147. V. Sineshchekov, T. Lamparter and E. Hartmann, Evidence for the existence of membrane-associated phytochrome in the cell, Photochem. Photobiol., 1994, 60, 516–520.

    Article  CAS  PubMed  Google Scholar 

  148. A. Sudnitsin, E. Adam, F. Nagy, E. Schäfer and V. Sineshchekov, phyA-GFP is spectroscopically and photochemically close to phyA and comprises both phyA′ and phyA″, Plant Photobiology Meeting, Phillips-Universität, Marburg, 2003, Abstract P9.

    Google Scholar 

  149. A. G. Heyer, D. Mozley, V. Landschutze, B. Thomas and C. Gatz, Function of phytochrome A in Solanum tuberosum as revealed through the study of transgenic plants, Plant Physiol., 1995, 109, 53–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. L. Shlumukov, F. Barro, P. Barcelo, P. Lazzeri and H. Smith, Establishment of far-red high irradiance responses in wheat through transgenic expression of an oat phytochrome A gene, Plant Cell Environ., 2001, 24, 703–712.

    Article  CAS  Google Scholar 

  151. V. A. Sineshchekov and J. L. Weller, Two modes of the light-induced phytochrome A decline–with and without changes in the relative content of its native pools (phyA′ and phyA″): evidence from in situ fluorescence investigations of wild-type and mutant phyA-3D pea, J. Photochem. Photobiol., submitted.

  152. J. L. Weller, S. L. Batge, J. J. Smith, L. H. J. Kerckhoffs, V. A. Sineshchekov, I. C. Murfet and J. B. Reid, A dominant mutation in the pea PHYA gene impairs light-dependent PHYA degradation, Plant Physiol., in press.

  153. A. R. Hozwarth, E. Venuti, S. E. Braslavsky and K. Schaffner, The phototransformation process in Phytochrome. I. Ultrafast fluorescence component and kinetic models for the initial Pr → Pfr transformation steps in native phytochrome, Biochim. Biophys. Acta, 1992, 1140, 59–68.

    Article  Google Scholar 

  154. M. E. Lippitsch, H. Riegler, F. R. Aussenegg, G. Hermann and E. Muller, Picosecond absorption and fluorescence studies on large phytochrome from rye, Biochem. Physiol. Pflanz., 1988, 183, 1–6.

    Article  CAS  Google Scholar 

  155. P.-S. Song, B. R. Singh, N. Tamaui, T. Yamazaki, I. Yamazaki, S. Tokutomi and M. Furuya, Primary photoprocesses of phytochrome. Picosecond fluorescence kinetics of oat and pea phytochromes, Biochemistry, 1989, 28, 3265–3271.

    Article  CAS  PubMed  Google Scholar 

  156. M. J. Terry, J. L. Hall and B. Thomas, The association of type I phytochrome with wheat leaf plasma membranes, J. Plant Physiol., 1992, 140, 691–698.

    Article  CAS  Google Scholar 

  157. T. Lamparter, P. Lutterbuse, H. A. W. Schneider-Poetsch and R. Hertel, A study of membrane-associated phytochrome: hydrophobicity test and native size determination, Photochem. Photobiol., 1992, 56, 697–707.

    Article  CAS  Google Scholar 

  158. P. Schmidt, T. Gensch, A. Remberg, W. Gärtner, S. E. Braslavsky and K. Schaffner, The complexity of the Pr to Pfr phototransformation kinetics is an intrinsic property of native phytochrome, Photochem. Photobiol., 1998, 68, 754–761.

    CAS  Google Scholar 

  159. I. Michler and S. E. Braslavsky, Time-Resolved Thermodynamic Analysis of the Oat Phytochrome A Phototransformation. A Photothermal Beam Deflection Study, Photochem. Photobiol., 2001, 74, 624–635.

    Article  CAS  PubMed  Google Scholar 

  160. V. Sineshchekov, A. Sudnitsin, E. Adam, F. Nagy and E. Schäfer, unpublished results.

  161. V. Sineshchekov and T. Lamparter, unpublished results.

  162. L. Koppel’ and V. Sineshchekov, unpublished results.

  163. V. Sineshchekov, O. Belyaeva and A. Sudnitsin, unpublished results.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sineshchekov, V.A. Phytochrome A: functional diversity and polymorphism. Photochem Photobiol Sci 3, 596–607 (2004). https://doi.org/10.1039/b315430k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b315430k

Navigation