Skip to main content
Log in

Divergent mechanisms for the tuning of shortwave sensitive visual pigments in vertebrates

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Of the four classes of vertebrate cone visual pigments, the shortwave-sensitive SWS1 class shows the shortest ?max values with peaks in different species in either the violet (390-435 nm) or ultraviolet (around 365 nm) regions of the spectrum. Phylogenetic evidence indicates that the ancestral pigment was probably UV-sensitive (UVS) and that the shifts between violet and UV have occurred many times during evolution. This is supported by the different mechanisms for these shifts in different species. All visual pigments possess a chromophore linked via a Schiff base to a Lys residue in opsin protein. In violet-sensitive (VS) pigments, the Schiff base is protonated whereas in UVS pigments, it is almost certainly unprotonated. The generation of VS from ancestral UVS pigments most likely involved amino acid substitutions in the opsin protein that serve to stabilise protonation. The key residues in the opsin protein for this are at sites 86 and 90 that are adjacent to the Schiff base and the counterion at Glu113. In this review, the different molecular mechanisms for the UV or violet shifts are presented and discussed in the context of the structural model of bovine rhodopsin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Dratz and P. A., Hargrave, The structure of rhodopsin and the outer segment disc membrane Trends Biochem. Sci. 1983 8 128–131

    Article  CAS  Google Scholar 

  2. K. Palczewski, T. Kumasaka, T. Hori, C. A. Behnke, H. Motoshima, B. A. Fox, I. Le Trong, D. C. Teller, T. Okada, R. E. Stenkamp, M. Yamamoto and M., Miyano, Crystal structure of rhodopsin: A G protein-coupled receptor Science 2000 289 739–745

    Article  CAS  PubMed  Google Scholar 

  3. J. K. Bowmaker, S. Astell, D. M. Hunt and J. D., Mollon, Photosensitive and photostable pigments in the retinae of Old World monkeys J. Exp. Biol. 1991 156 1–19

    Article  CAS  PubMed  Google Scholar 

  4. S. Yokoyama, F. B. Radlwimmer and S., Kawamura, Regeneration of ultraviolet pigments of vertebrates FEBS Lett. 1998 423 155–158

    Article  CAS  PubMed  Google Scholar 

  5. P. A. Liebman and G., Entine, Sensitive low-light-level microspectrophotometer: detection of photosensitive pigments of retinal cones J. Opt. Soc. Am. 1964 54 1451–9

    Article  CAS  PubMed  Google Scholar 

  6. J. K. Bowmaker, L. A. Heath, S. E. Wilkie and D. M., Hunt, Visual pigments and oil droplets from six classes of photoreceptor in the retinas of birds Vision Res. 1997 37 2183–2194

    Article  CAS  PubMed  Google Scholar 

  7. D. Das, S. E. Wilkie, D. M. Hunt and J. K., Bowmaker, Visual pigments and oil droplets in the retina of a passerine bird the canary Serinus canaria: microspectrophotometry and opsin sequences Vision Res. 1999 39 2801–2815

    Article  CAS  PubMed  Google Scholar 

  8. S. E. Wilkie, P. M. Vissers, D. Das, W. J. Degrip, J. K. Bowmaker and D. M., Hunt, The molecular basis for UV vision in birds: spectral characteristics, cDNA sequence and retinal localization of the UV-sensitive visual pigment of the budgerigar (Melopsittacus undulatus) Biochem. J. 1998 330 541–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. J. A. Avery, J. K. Bowmaker, M. B. A. Djamgoz and J. E. G., Downing, Ultraviolet receptors in a freshwater fish J. Physiol. 1983 334 23P

    Google Scholar 

  10. F. I. Hárosi and Y., Hashimoto, Ultraviolet visual pigment in a vertebrate: a tetrachromatic cone system in the dace Science 1983 222 1021–3

    Article  PubMed  Google Scholar 

  11. J. K. Bowmaker, A. Thorpe and R. H., Douglas, Ultraviolet-sensitive cones in the goldfish Vision Res. 1991 31 349–352

    Article  CAS  PubMed  Google Scholar 

  12. O. Hisatomi, T. Satoh and F., Tokunaga, The primary structure and distribution of killifish visual pigments Vision Res. 1997 37 3089–3096

    Article  CAS  PubMed  Google Scholar 

  13. K. L. Carleton, F. I. Harosi and T. D., Kocher, Visual pigments of African cichlid fishes: evidence for ultraviolet vision from microspectrophotometry and DNA sequences Vision Res. 2000 40 879–890

    Article  CAS  PubMed  Google Scholar 

  14. J. K. Bowmaker and Y. W., Kunz, Ultraviolet receptors, tetrachromatic colour vision and retinal mosaics in the brown trout (Salmo trutta): age-dependent changes Vision Res. 1987 27 2101–2108

    Article  CAS  PubMed  Google Scholar 

  15. W. N. McFarland and E. R., Loew, Ultraviolet visual pigments in marine fishes of the family pomacentridae Vision Res. 1994 34 1393–1396

    Article  CAS  PubMed  Google Scholar 

  16. R. L. Johnson, K. B. Grant, T. C. Zankel, M. F. Boehm, S. L. Merbs, J. Nathans and K., Nakanishi, Cloning and expression of goldfish opsin sequences Biochemistry 1993 32 208–214

    Article  CAS  PubMed  Google Scholar 

  17. I. N. Flamarique and F. I., Harosi, Photoreceptors, visual pigments, and ellipsosomes in the killifish, Fundulus heteroclitus: a microspectrophotometric and histological study Visual Neurosci. 2000 17 403–20

    Article  CAS  Google Scholar 

  18. W. T. Allison, S. G. Dann, J. V. Helvik, C. Bradley, H. D. Moyer and C. W., Hawryshyn, Ontogeny of ultraviolet-sensitive cones in the retina of rainbow trout (Oncorhynchus mykiss) J. Comp. Neurol. 2003 461 294–306

    Article  PubMed  Google Scholar 

  19. J. X. Ma, M. Kono, L. Xu, J. Das, J. C. Ryan, E. S. Hazard, 3rd, D. D. Oprian and R. K., Crouch, Salamander UV cone pigment: sequence, expression, and spectral properties Visual Neurosci. 2001 18 393–9

    Article  CAS  Google Scholar 

  20. O. Hisatomi, S. Kayada, Y. Taniguchi, Y. Kobayashi, T. Satoh and F., Tokunaga, Primary structure and characterization of a bullfrog visual pigment contained in small single cones Comp. Biochem. Physiol., B: Biochem. Mol. Biol. 1998 119 585–91

    Article  CAS  Google Scholar 

  21. S. Kawamura and S., Yokoyama, Functional characterization of visual and nonvisual pigments of American chameleon (Anolis carolinensis) Vision Res. 1998 38 37–44

    Article  CAS  PubMed  Google Scholar 

  22. D. M. Hunt, S. E. Wilkie, J. K. Bowmaker and S., Poopalasundaram, Vision in the ultraviolet Cell Mol. Life Sci. 2001 58 1583–98

    Article  CAS  PubMed  Google Scholar 

  23. T. Okano, D. Kojima, Y. Fukada, Y. Shichida and T., Yoshizawa, Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments Proc.Natl. Acad. Sci. USA 1992 89 5932–5936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. S. E. Wilkie, P. R. Robinson, T. W. Cronin, S. Poopalasundaram, J. K. Bowmaker and D. M., Hunt, Spectral tuning of avian violet- and ultraviolet-sensitive visual pigments Biochemistry 2000 39 7895–7901

    Article  CAS  PubMed  Google Scholar 

  25. S. Yokoyama, F. B. Radlwimmer and N. S., Blow, Ultraviolet pigments in birds evolved from violet pigments by a single amino acid change Proc. Natl. Acad. Sci. USA 2000 97 7366–7371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. A. Odeen and O., Hastad, Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA Mol. Biol. Evol. 2003 20 855–61

    Article  PubMed  CAS  Google Scholar 

  27. J. A. Cowing, S. Poopalasundaram, S. E. Wilkie, P. R. Robinson, J. K. Bowmaker and D. M., Hunt, The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments Biochem. J. 2002 367 129–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. J. I. Fasick, M. L. Applebury and D. D., Oprian, Spectral tuning in the mammalian shortwavelength sensitive cone pigments Biochemistry 2002 41 6860–5

    Article  CAS  PubMed  Google Scholar 

  29. S. S. Deeb, M. J. Wakefield, T. Tada, L. Marotte, S. Yokoyama and J. A. Marshall Graves The Cone Visual Pigments of an Australian Marsupial, the Tammar Wallaby (Macropus eugenii): Sequence, Spectral Tuning, and Evolution Mol. Biol. Evol. 2003 20 1642–9

    Article  CAS  PubMed  Google Scholar 

  30. C. A. Arrese, N. S. Hart, N. Thomas, L. D. Beazley and J., Shand, Trichromacy in Australian marsupials Curr. Biol. 2002 12 657–60

    Article  CAS  PubMed  Google Scholar 

  31. J. Nathans, D. Thomas and D. S., Hogness, Molecular genetics of human color vision: the genes encoding blue, green, and red pigments Science 1986 232 193–202

    Article  CAS  PubMed  Google Scholar 

  32. D. M. Hunt, J. A. Cowing, R. Patel, B. Appukuttan, J. K. Bowmaker and J. D., Mollon, Sequence and evolution of the blue cone pigment gene in Old and New World primates Genomics 1995 27 535–538

    Article  CAS  PubMed  Google Scholar 

  33. D. M. Starace and B. E., Knox, Cloning and expression of a Xenopus short wavelength cone pigment Exp. Eye Res. 1998 67 209–20

    Article  CAS  PubMed  Google Scholar 

  34. S. Yokoyama and Y., Shi, Genetics and evolution of ultraviolet vision in vertebrates FEBS Lett. 2000 486 167–72

    Article  CAS  PubMed  Google Scholar 

  35. Y. Shi, F. B. Radlwimmer and S., Yokoyama, Molecular genetics and the evolution of ultraviolet vision in vertebrates Proc. Natl. Acad. Sci. USA 2001 98 11731–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. A. Dukkipati, B. W. Vought, D. Singh, R. R. Birge and B. E., Knox, Serine 85 in transmembrane helix 2 of short-wavelength visual pigments interacts with the retinylidene Schiff base counterion Biochemistry 2001 40 15098–108

    Article  CAS  PubMed  Google Scholar 

  37. Y. Shi and S., Yokoyama, Molecular analysis of the evolutionary significance of ultraviolet vision in vertebrates Proc. Natl. Acad. Sci. USA 2003 100 8308–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. S. Yokoyama, N. S. Blow and F. B., Radlwimmer, Molecular evolution of color vision of zebra finch Gene 2000 259 17–24

    Article  CAS  PubMed  Google Scholar 

  39. J., Nathans, Determinants of visual pigment absorbance: identification of the retinylidene Schiff’s base counterion in bovine rhodopsin Biochemistry 1990 29 9746–9752

    Article  CAS  PubMed  Google Scholar 

  40. K. R. Babu, A. Dukkipati, R. R. Birge and B. E., Knox, Regulation of phototransduction in short-wavelength cone visual pigments via the retinylidene Schiff base counterion Biochemistry 2001 40 13760–6

    Article  CAS  PubMed  Google Scholar 

  41. A. Dukkipati, A. Kusnetzow, K. R. Babu, L. Ramos, D. Singh, B. E. Knox and R. R., Birge, Phototransduction by vertebrate ultraviolet visual pigments: protonation of the retinylidene Schiff base following photobleaching Biochemistry 2002 41 9842–51

    Article  CAS  PubMed  Google Scholar 

  42. H. Deng, L. Huang, R. Callender and T., Ebrey, Evidence for a bound water molecule next to the retinal Schiff base in bacteriorhodopsin and rhodopsin: a resonance Raman study of the Schiff base hydrogen/deuterium exchange Biophys. J. 1994 66 1129–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. M. Eilers, P. J. Reeves, W. Ying, H. G. Khorana and S. O., Smith, Magic angle spinning NMR of the protonated retinylidene Schiff base nitrogen in rhodopsin: expression of 15N-lysine- and 13C-glycine-labeled opsin in a stable cell line Proc. Natl. Acad. Sci. USA 1999 96 487–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. G. Steinberg, M. Ottolenghi and M., Sheves, pKa of the protonated Schiff base of bovine rhodopsin. A study with artificial pigments Biophys. J. 1993 64 1499–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. M. Han and S. O., Smith, High-resolution structural studies of the retinal—Glu113 interaction in rhodopsin Biophys. Chem. 1995 56 23–29

    Article  CAS  PubMed  Google Scholar 

  46. F. I. Hárosi and C. Sándorfy Retinylidene-opsin Schiff base chromophores and their accessibility to water Photobiol. Photochem. 1995 61 510–517

    Article  Google Scholar 

  47. T. Nagata, A. Terakita, H. Kandori, D. Kojima, Y. Shichida and A., Maeda, Water and peptide backbone structure in the active center of bovine rhodopsin Biochemistry 1997 36 6164–6170

    Article  CAS  PubMed  Google Scholar 

  48. T. Okada, Y. Fujiyoshi, M. Silow, J. Navarro, E. M. Landau and Y., Shichida, Functional role of internal water molecules in rhodopsin revealed by X-ray crystallography Proc. Natl. Acad. Sci. USA 2002 99 5982–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Y. Furutani, Y. Shichida and H., Kandori, Structural changes of water molecules during the photoactivation processes in bovine rhodopsin Biochemistry 2003 42 9619–25

    Article  CAS  PubMed  Google Scholar 

  50. J. A. Cowing, S. Poopalasundaram, S. E. Wilkie, J. K. Bowmaker and D. M., Hunt, Spectral tuning and evolution of short wave-sensitive cone pigments in cottoid fish from Lake Baikal Biochemistry 2002 41 6019–6025

    Article  CAS  PubMed  Google Scholar 

  51. V. I. Govardovskii, N. Fyhrquist, T. Reuter, D. G. Kuzmin and K., Donner, In search of the visual pigment template Vis. Neurosci. 2000 17 509–28

    Article  CAS  PubMed  Google Scholar 

  52. C. G. Sibley and J. E. Ahlquist, Phylogeny and classification of birds: a study in molecular evolution, Yale University Press, New Haven, CT, 1990

    Google Scholar 

  53. N. Guex and M. C. Peitsch Swiss-Model and the Swiss-Pdb viewer: an environment for comparative protein modelling Electrophoresis 1997 18 2714–2723

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Hunt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunt, D.M., Cowing, J.A., Wilkie, S.E. et al. Divergent mechanisms for the tuning of shortwave sensitive visual pigments in vertebrates. Photochem Photobiol Sci 3, 713–720 (2004). https://doi.org/10.1039/b314693f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b314693f

Navigation