Skip to main content
Log in

Photooxidation of cellulose acetate and cellobiose by the uranyl ion

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photooxidation of cellulose acetate by uranyl nitrate in acetone solutions has been investigated. Studies of the effect of the polymer on the uranyl luminescence showed an initial increase in intensity, followed by quenching. This is interpreted in terms of competition between complexation of uranyl ions by the polymer and dynamic quenching. In the quenching region, Stern–Volmer kinetics are followed. Upon photolysis of the solution, a decrease in viscosity was observed, consistent with chain scission. However, there was no sign of formation of reduced uranium species, suggesting that they are reoxidised by molecular oxygen. Model studies were carried out with cellobiose and it was confirmed that the luminescence quenching involves both dynamic and static processes. Photolysis of aqueous solutions of cellobiose and uranyl nitrate or perchlorate led to formation of uranium(v) and a decrease in pH. Upon interruption of photolysis, uranium(v) was seen to disproportionate. Yields of reduced uranium species were higher in degassed than aerated solutions, consistent with their oxidation by molecular oxygen in the latter case. Organic radicals were detected by electron paramagnetic resonance spectroscopy upon photolysis of cellulose acetate saturated with uranyl nitrate. The mechanism of photooxidation is suggested to involve hydrogen atom abstraction from the substrate by excited uranyl ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Balzani, F. Bolletta, M. T. Gandolfi, M. Maestri, Bimolecular electron transfer reactions of the excited states of transition metal complexes, Top. Curr. Chem., 1978, 75, 1–63.

    Article  CAS  Google Scholar 

  2. C. K. Jorgensen, R. Reisfeld, Uranyl photophysics, Struct. Bonding (Berlin), 1992, 50, 121–171.

    Article  Google Scholar 

  3. H. D. Burrows, S. J. Formosinho, M. G. Miguel, F. Pinto Coelho, Quenching of the luminescent state of the uranyl ion by metal ions: evidence for an electron-transfer mechanism, J. Chem. Soc., Faraday Trans. 1, 1976, 72, 163–171.

    Article  CAS  Google Scholar 

  4. M. D. Marcantonatos, Mechanism of interaction between aquo-metallic complexes and the photoexcited aquouranyl(VI) ion, J. Chem. Soc., Faraday Trans. 1, 1979, 75, 2252–2272.

    Article  CAS  Google Scholar 

  5. E. Rabinowitch and R. L. Belford, Spectroscopy and Photochemistry of Uranyl Compounds, Pergamon, Oxford, 1964.

    Google Scholar 

  6. H. Gusten, Gmelin Handbook of Inorganic Chemistry, Uranium Supplement, A6, Springer-Verlag, Berlin, 1983, p. 80.

    Google Scholar 

  7. C. P. Baird, T. J. Kemp, Luminescence, spectroscopy, lifetimes and quenching mechanisms of excited states of uranyl and other actinide ions, Prog. React. Kinet., 1997, 22, 87–139.

    CAS  Google Scholar 

  8. A. B. Yusov, V. P. Shilov, Photochemistry of f-element ions, Russ. Chem. Bull., Int. Ed., 2000, 49, 1925–1953.

    Article  CAS  Google Scholar 

  9. S. J. Formosinho, H. D. Burrows, M. da G. Miguel, M. E. D. G. Azenha, I. M. Saraiva, A. C. D. N. Ribeiro, I. V. Khudyakov, R. G. Gasanov, M. Bolte, M. Sarakha, Deactivation processes of the lowest excited state of [UO2(H2O)5]2+ in aqueous solution, Photochem. Photobiol. Sci., 2003, 2, 569–575.

    Article  CAS  PubMed  Google Scholar 

  10. H. D. Burrows, T. J. Kemp, The photochemistry of the uranyl ion, Chem. Soc. Rev., 1974, 3, 139–165.

    Article  CAS  Google Scholar 

  11. D. Leroy, L. Martinot, C. Jérôme, R. Jérôme, Determination of the stability constants of uranyl/ polymer complexes by differential pulse polarography, Polymer, 2001, 42, 4589–4596.

    Article  CAS  Google Scholar 

  12. D. Saraydin, Y. Isikver, N. Sahiner, Uranyl binding properties of poly(hydroxamic acid) hydrogels, Polym. Bull., 2001, 47, 81–89.

    Article  CAS  Google Scholar 

  13. P. E. Nielsen, C. Hiort, S. H. Sönnichsen, O. Buchardt, O. Dahl, B. Nordèn, DNA binding and photocleavage by uranyl(VI) salts, J. Am. Chem. Soc., 1992, 114, 4967–4975.

    Article  CAS  Google Scholar 

  14. C. Mashavaiah, S. Verma, Reusable photonucleases: plasmid scission by a uranyl ion impregnated adenine homopolymer in the presence of visible light and sunlight, Chem. Commun., 2003, 800–801.

    Google Scholar 

  15. H. D. Burrows, M. da G. Miguel, Applications and limitations of uranyl ion as a photophysical probe, Adv. Colloid Interface Sci., 2001, 89–90, 485–496.

    Article  PubMed  Google Scholar 

  16. C. Neuberg, Chemische umwandlungen durch strahlenarten. I. Mitteilung. Katalytische reaktionen des sonnenlichtes, Biochem. Z., 1908, 13, 305–320.

    Google Scholar 

  17. L. J. Heidt, Quantum yields and kinetics of photosensitized production of reducing sugars from aqueous solutions of uranyl sulfate by visible and ultraviolet light, J. Am. Chem. Soc., 1939, 61, 3223–3229.

    Article  CAS  Google Scholar 

  18. L. J. Heidt, Photostationary state kinetics, J. Am. Chem. Soc., 1954, 76, 5962–5968.

    Article  CAS  Google Scholar 

  19. D. Greatorex, R. J. Hill, T. J. Kemp, T. J. Stone, Electron spin resonance studies of photo-oxidation by metal ions in rigid media at low temperatures. Part 4.–Survey of photo-oxidation by the uranyl ion, J. Chem. Soc., Faraday Trans. 1, 1972, 68, 2059–2076.

    Article  CAS  Google Scholar 

  20. M. E. D. G. Azenha, H. D. Burrows, S. J. Formosinho, M. G. M. Miguel, Photophysics of the excited uranyl ion in aqueous solutions. Part 6.–Quenching effects of aliphatic alcohols, J. Chem. Soc., Faraday Trans. 1, 1989, 85, 2625–2634.

    Article  CAS  Google Scholar 

  21. Polymer Handbook, ed. J. Brandrup and E. H. Immergaut, John Wiley & Sons, New York, 1975.

    Google Scholar 

  22. M. Sarakha, M. Bolte, H. D. Burrows, Electron-transfer oxidation of chlorophenols by uranyl ion excited state in aqueous solution. Steady-state and nanosecond flash photolysis studies, J. Phys. Chem. A, 2000, 104, 3142–3149.

    Article  CAS  Google Scholar 

  23. M. E. D. G. Azenha, H. D. Burrows, S. J. Formosinho, M. L. P. Leitão, M. G. M. Miguel, Co-ordination behaviour of dioxouranium (VI) nitrate in water-acetone mixtures, J. Chem. Soc., Dalton Trans., 1988, 2893–2895.

    Google Scholar 

  24. P. Brint, A. J. McCaffery, Electronic spectra and magnetic circular dichroism of the uranyl ion. Part II. The effect of reduced symmetry on the spectra, J. Chem. Soc., Dalton Trans., 1974, 51–55.

    Google Scholar 

  25. C. Görller-Walrand, S. DeJaegere, Correlation between the vibronic spectra of the uranyl ion and the geometry of its coordination, Spectrochim. Acta, Part A, 1972, 28, 257–268.

    Article  Google Scholar 

  26. H. D. Burrows, S. J. Formosinho, P. M. Saraiva, Photo-oxidation of poly(vinyl alcohol) by uranyl ion: a route to photoinitiated graft copolymerisation, J. Photochem. Photobiol., A, 1992, 63, 67–73.

    Article  CAS  Google Scholar 

  27. K. R. Howes, A. Bakac, J. H. Espenson, Electron-transfer reactions of uranium (V): kinetics of the uranium (V)-uranium (VI) self-exchange reaction, Inorg. Chem., 1988, 27, 791–794.

    Article  CAS  Google Scholar 

  28. M. Muroi, S. Imai, A. Hamaguchi, Sorption of uranium by cellulose derivatives, Analyst, 1985, 110, 1083–1086.

    Article  CAS  Google Scholar 

  29. A. Bakac, J. H. Espenson, Autoxidation of uranium(V). Catalysis and inhibition by copper ions, Inorg. Chem., 1995, 34, 1730–1735.

    Article  CAS  Google Scholar 

  30. H. D. Burrows, Electron transfer from halide ions to UO22+ excited-state ions in aqueous solution: formation and decay of dihalide radical anions, Inorg. Chem., 1990, 29, 1549–1554.

    Article  CAS  Google Scholar 

  31. R. J. Hill, T. J. Kemp, D. M. Allen, A. Cox, Absorption spectrum, lifetime and photoreactivity towards alcohols of the excited state of the aqueous uranyl ion (UO22+), J. Chem. Soc., Faraday Trans. 1, 1974, 70, 847–857.

    Article  CAS  Google Scholar 

  32. A. P. Darmanyan, I. V. Khudyakov, Study of luminescent forms of the uranyl ion, Photochem. Photobiol., 1990, 52, 293–298.

    Article  CAS  Google Scholar 

  33. M. D. Marcantonatos, Photochemistry of the exciplex of the uranyl ion, J. Chem. Soc., Faraday Trans. 1, 1980, 76, 1093–1115.

    Article  CAS  Google Scholar 

  34. R. N. Sylva, M. R. Davidson, The hydrolysis of metal ions. Part 2. Dioxouranium(VI), J. Chem. Soc., Dalton Trans., 1979, 465–471.

    Google Scholar 

  35. J. R. Bartlett, R. P. Cooney, Raman spectra of zeolites exchanged with uranyl (VI) cations–I. Zeolite Y, Spectrochim. Acta, Part A, 1989, 45, 541–547.

    Article  Google Scholar 

  36. D. Cohen, The preparation and spectrum of uranium (V) ions in aqueous solutions, J. Inorg. Nucl. Chem., 1970, 32, 3525–3530.

    Article  CAS  Google Scholar 

  37. J. T. Bell, H. A. Friedman, M. R. Billings, Spectrophotometric studies of dioxouranium (V) in aqueous media–I. The perchlorate medium, J. Inorg. Nucl. Chem., 1974, 36, 2563–2567.

    Article  CAS  Google Scholar 

  38. D. Rai, A. R. Felmy, J. L. Ryan, Uranium (IV) hydrolysis constants and solubility product of UO2.x H2O(am), Inorg. Chem., 1990, 29, 260–264.

    Article  CAS  Google Scholar 

  39. R. E. Florin, L. A. Wall, Electron spin resonance of gamma-irradiated cellulose, J. Polym. Sci., Part A, 1963, 1, 1163–1173.

    Google Scholar 

  40. A. Merlin, J. P. Fouassier, Photochemical investigations into cellulosic materials. I. Free radical generation in cellulose by photosensitised excitation, Angew. Makromol. Chem., 1980, 86, 109–121.

    Article  CAS  Google Scholar 

  41. A. Merlin, J. P. Fouassier, Photochemical investigations into cellulosic materials. IV. Photosensitised free radical generation in cellulose acetate and oligosaccharide compounds, Angew. Makromol. Chem., 1982, 108, 185–195.

    Article  CAS  Google Scholar 

  42. M. Sarakha, M. Bolte, H. D. Burrows, The photo-oxidation of 2,6-dimethylphenol and monophenylphenols by uranyl ion in aqueous solution, J. Photochem. Photobiol., A, 1997, 107, 101–106.

    Article  CAS  Google Scholar 

  43. Y. Mao, A. Bakac, Photocatalytic oxidation of toluene to benzaldehyde by molecular oxygen, J. Phys. Chem., 1996, 100, 4219–4223.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fonseca, S.M., Burrows, H.D., Miguel, M.G. et al. Photooxidation of cellulose acetate and cellobiose by the uranyl ion. Photochem Photobiol Sci 3, 317–321 (2004). https://doi.org/10.1039/b314671e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b314671e

Navigation