Skip to main content
Log in

Intramolecular singlet–singlet energy transfer in antenna-substituted azoalkanes

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Two novel azoalkane bichromophores and related model compounds have been synthesised and photophysically characterised. Dimethylphenylsiloxy (DPSO) or dimethylnaphthylsiloxy (DNSO) serve as aromatic donor groups (antenna) and the azoalkane 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) as the acceptor. The UV spectral window of DBO (250–300 nm) allows selective excitation of the donor. Intramolecular singlet–singlet energy transfer to DBO is highly efficient and proceeds with quantum yields of 0.76 with DPSO and 0.99 with DNSO. The photophysical and spectral properties of the bichromophoric systems suggest that energy transfer occurs through diffusional approach of the donor and acceptor within a van der Waals contact at which the exchange mechanism is presumed to dominate. Furthermore, akin to the behaviour of electron-transfer systems in the Marcus inverted region, a rate of energy transfer 2.5 times slower was observed for the system with the more favourable energetics, i.e. singlet–singlet energy transfer from DPSO proceeded slower than from DNSO, although the process is more exergonic for DPSO (−142 kJ mol−1 for DPSO versus−67 kJ mol−1 for DNSO).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. W. M. Nau, X. Zhang, An exceedingly long-lived fluorescent state as a distinct structural and dynamic probe for supramolecular association: an exploratory study of host–guest complexation by cyclodextrins, J. Am. Chem. Soc., 1999, 121, 8022–8032.

    Article  CAS  Google Scholar 

  2. C. Marquez, W. M. Nau, Polarizabilities inside molecular containers, Angew. Chem., Int. Ed., 2001, 40, 4387–4390.

    Article  CAS  Google Scholar 

  3. W. M. Nau, A fluorescent probe for antioxidants, J. Am. Chem. Soc., 1998, 120, 12-614–12-618.

    Article  CAS  Google Scholar 

  4. C. Marquez, U. Pischel, W. M. Nau, Selective fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene by nucleotides, Org. Lett., 2003, 5, 3911–3914.

    Article  CAS  PubMed  Google Scholar 

  5. G. Gramlich, J. Zhang, W. M. Nau, Increased antioxidant reactivity of vitamin C at low pH in model membranes, J. Am. Chem. Soc., 2002, 124, 11-252–11-253.

    Article  CAS  Google Scholar 

  6. R. R. Hudgins, F. Huang, G. Gramlich, W. M. Nau, A fluorescence-based method for direct measurement of submicrosecond intramolecular contact formation in biopolymers: an exploratory study with polypeptides, J. Am. Chem. Soc., 2002, 124, 556–564.

    Article  CAS  PubMed  Google Scholar 

  7. W. M. Nau, X. Wang, Biomolecular and supramolecular kinetics in the submicrosecond time range: the fluorazophore approach, ChemPhysChem, 2002, 3, 393–398.

    Article  CAS  PubMed  Google Scholar 

  8. W. M. Nau, F. Huang, X. Wang, H. Bakirci, G. Gramlich, C. Marquez, Exploiting long-lived molecular fluorescence, Chimia, 2003, 57, 161–167.

    Article  CAS  Google Scholar 

  9. F. Huang, W. M. Nau, A conformational flexibility scale for amino acids in peptides, Angew. Chem., Int. Ed., 2003, 42, 2269–2272.

    Article  CAS  Google Scholar 

  10. W. M. Nau, G. Greiner, H. Rau, J. Wall, M. Olivucci, J. C. Scaiano, Fluorescence of 2,3-diazabicyclo[2.2.2]oct-2-ene revisited: solvent-induced quenching of the n,π*-excited state by an aborted hydrogen atom transfer, J. Phys. Chem. A, 1999, 103, 1579–1584.

    Article  CAS  Google Scholar 

  11. W. M. Nau, G. Greiner, J. Wall, H. Rau, M. Olivucci, M. A. Robb, The mechanism for hydrogen abstraction by n,π* excited singlet states: evidence for thermal activation and deactivation through a conical intersection, Angew. Chem., Int. Ed., 1998, 37, 98–101.

    Article  CAS  Google Scholar 

  12. A. Sinicropi, U. Pischel, R. Basosi, W. M. Nau, M. Olivucci, Conical intersections in charge-transfer induced quenching, Angew. Chem., Int. Ed., 2000, 39, 4582–4586.

    Article  CAS  Google Scholar 

  13. H. E. Zimmerman, T. D. Goldman, T. K. Hirzel, S. P. Schmidt, Rod-like organic molecules. Energy-transfer studies using single-photon counting, J. Org. Chem., 1980, 45, 3933–3951.

    Article  CAS  Google Scholar 

  14. H. Oevering, J. W. Verhoeven, M. N. Paddon-Row, E. Cotsaris, N. S. Hush, Long-range exchange contribution to singlet-singlet energy transfer in a series of rigid bichromophoric molecules, Chem. Phys. Lett., 1988, 143, 488–495.

    Article  CAS  Google Scholar 

  15. J. Kroon, A. M. Oliver, M. N. Paddon-Row, J. W. Verhoeven, Observation of a remarkable dependence of the rate of singlet-singlet energy transfer on the configuration of the hydrocarbon bridge in bichromophoric systems, J. Am. Chem. Soc., 1990, 112, 4868–4873.

    Article  CAS  Google Scholar 

  16. F. Schael, M. B. Rubin, S. Speiser, Electronic energy transfer in solution in naphthalene-anthracene, naphthalene-acridine and benzene-DANS bichromophoric compounds, J. Photochem. Photobiol., A, 1998, 115, 99–108.

    Article  CAS  Google Scholar 

  17. S. Speiser, F. Schael, Molecular structure control of intramolecular electronic energy transfer, J. Mol. Liq., 2000, 86, 25–35.

    Article  CAS  Google Scholar 

  18. G. L. Closs, M. D. Johnson, J. R. Miller, P. Piotrowiak, A connection between intramolecular long-range electron, hole, and triplet energy transfers, J. Am. Chem. Soc., 1989, 111, 3751–3753.

    Article  CAS  Google Scholar 

  19. P. J. Wagner, P. Klán, Intramolecular triplet energy transfer in flexible molecules: electronic, dynamic, and structural aspects, J. Am. Chem. Soc., 1999, 121, 9626–9635.

    Article  CAS  Google Scholar 

  20. N. J. Turro, Energy transfer processes, Pure Appl. Chem., 1977, 49, 405–429.

    Article  CAS  Google Scholar 

  21. S. Speiser, Photophysics and mechanisms of intramolecular electronic energy transfer in bichromophoric molecular systems: solution and supersonic jet studies, Chem. Rev., 1996, 96, 1953–1976.

    Article  CAS  PubMed  Google Scholar 

  22. K. Razi Naqvi, C. Steel, Exchange-induced resonance energy transfer, Chem. Phys. Lett., 1970, 6, 29–32.

    Article  Google Scholar 

  23. P. S. Engel, C. Steel, Photochemistry of aliphatic azo compounds in solution, Acc. Chem. Res., 1973, 6, 275–281.

    Article  CAS  Google Scholar 

  24. P. S. Engel, L. D. Fogel, C. Steel, Singlet energy transfer to azoalkanes, J. Am. Chem. Soc., 1974, 96, 327–332.

    Article  CAS  Google Scholar 

  25. C. C. Wamser, L. Lou, J. Mendoza, E. Olson, Singlet electronic energy transfer to azoalkanes: separation of collisional and long-range mechanisms by steric and solvent-viscosity effects, J. Am. Chem. Soc., 1981, 103, 7228–7232.

    Article  CAS  Google Scholar 

  26. P. S. Engel, D. W. Horsey, J. N. Scholz, T. Karatsu, A. Kitamura, Intramolecular triplet energy transfer in ester-linked bichromophoric azoalkanes and naphthalenes, J. Phys. Chem., 1992, 96, 7524–7535.

    Article  CAS  Google Scholar 

  27. Z.-Z. Wu, J. Nash, H. Morrison, Organic photochemistry. 97. Antenna-initiated photochemistry in polyfunctional steroids. Photoepimerization of 3α-(dimethylphenylsiloxy)-5α-androstane-6,17-dione and its 3β isomer by through-bond exchange energy transfer, J. Am. Chem. Soc., 1992, 114, 6640–6648.

    Article  CAS  Google Scholar 

  28. Z.-Z. Wu, H. Morrison, Organic photochemistry. 95. Antenna-initiated photochemistry of distal groups in polyfunctional steroids. Intramolecular singlet and triplet energy transfer in 3α-(dimethylphenylsiloxy)-5α-androstan-17-one and 3α-(dimethylphenylsiloxy)-5α-androstane-11,17-dione, J. Am. Chem. Soc., 1992, 114, 4119–4128.

    Article  CAS  Google Scholar 

  29. J. K. Agyin, L. D. Timberlake, H. Morrison, Steroids as photonic wires. Z→E olefin photoisomerization involving ketone singlet and triplet switches by through-bond energy transfer, J. Am. Chem. Soc., 1997, 119, 7945–7953.

    Article  CAS  Google Scholar 

  30. T. R. van den Anker, C. L. Raston, Polymer- and metal-oxide-supported alkali metal naphthalenides: application in the generation of lithium and sodium reagents, J. Organomet. Chem., 1998, 550, 283–300.

    Article  Google Scholar 

  31. W. M. Nau, n,π* Photochemistry beyond ketones, EPA Newsl., 2000, 70, 6–29.

    CAS  Google Scholar 

  32. K. A. Zachariasse, A. L. Maçanita, W. Kühnle, Chain length dependence of intramolecular excimer formation with 1,n-bis(1-pyrenylcarboxy)alkanes for n= 1–16, 22, and 32, J. Phys. Chem. B, 1999, 103, 9356–9365.

    Article  CAS  Google Scholar 

  33. N. Lokan, M. N. Paddon-Row, T. A. Smith, M. La Rosa, K. P. Ghiggino, S. Speiser, Highly efficient through-bond-mediated electronic excitation energy transfer taking place over 12 Å, J. Am. Chem. Soc., 1999, 121, 2917–2918.

    Article  CAS  Google Scholar 

  34. S. L. Murov, I. Carmichael and G. L. Hug, Handbook of Photochemistry, Marcel Dekker, Inc., New York, 2nd edn., 1993.

    Google Scholar 

  35. X. Wang, E. N. Bodunov, W. M. Nau, Fluorescence quenching kinetics in short polymer chains: dependence on chain length, Opt. Spectrosc., 2003, 95, 603–613.

    Article  CAS  Google Scholar 

  36. To calculate the electron transfer energetics with the Rehm–Weller equation [ΔGet(kJ mol−1)= 96.5[EoxEredE*+C]), and for the energy-transfer energetics [ΔGSSET=E*(Acceptor)−E*(Donor)], the following photophysical and electrochemical parameters (versus SCE in acetonitrile unless otherwise stated) were used: for DBO, E*= 3.30 eV (318 kJ mol−1), 10Eox= 1.45 V (cf. W. M. Nau, W. Adam, D. Klapstein, C. Sahin, H. Walter, Correlation of oxidation and ionization potentials for azoalkanes, J. Org. Chem., 1997, 62, 5128–5132) and Ered=−2.80 V (cf.

    Article  CAS  Google Scholar 

  37. W. M. Nau, U. Pischel, “Inverted” solvent effect on charge transfer in the excited state, Angew. Chem., Int. Ed., 1999, 38, 2885–2888); for naphthalene, E*= 3.99 eV (385 kJ mol−1),34Eox= 1.60 V41 and Ered=−2.29 V41; for benzene E*= 4.75 eV (460 kJ mol−1),34Eox= 2.35 V (cf.

    Article  CAS  Google Scholar 

  38. S. Fukuzumi, K. Ohkubo, T. Suenobu, K. Kato, M. Fujitsuka, O. Ito, Photoalkylation of 10-alkylacridinium ion via a charge-shift type of photoinduced electron transfer controlled by solvent polarity, J. Am. Chem. Soc., 2001, 123, 8459–8467) and Ered=−3.31 V versus SCE in 1,2-dimethoxyethane (cf.

    Article  CAS  PubMed  Google Scholar 

  39. F. Gerson, H. Ohya-Nishiguchi, C. Wydler, Indirect determination of the half-wave reduction potential of benzene and of [2.2]paracyclophane, Angew. Chem., Int. Ed. Engl., 1976, 15, 552–553). The Coulomb term (C) was taken as −0.06 eV.

    Article  Google Scholar 

  40. G. L. Closs, P. Piotrowiak, J. M. MacInnis, G. R. Fleming, Determination of long distance intramolecular triplet energy transfer rates. A quantitative comparison with electron transfer, J. Am. Chem. Soc., 1988, 110, 2652–2653.

    Article  CAS  Google Scholar 

  41. P. J. Wagner, R. J. Truman, A. E. Puchalski, R. Wake, Extent of charge transfer in the photoreduction of phenyl ketones by alkylbenzenes, J. Am. Chem. Soc., 1986, 108, 7727–7738.

    Article  CAS  PubMed  Google Scholar 

  42. C. Coenjarts, J. C. Scaiano, Reaction pathways involved in the quenching of the photoactivated aromatic ketones xanthone and 1-azaxanthone by polyalkylbenzenes, J. Am. Chem. Soc., 2000, 122, 3635–3641.

    Article  CAS  Google Scholar 

  43. An interaction of both chromophores mediated by the spacer orbitals, i.e. a superexchange mechanism, was also considered. Its participation in the overall mechanism is presumably negligible, since considerable flexibility of the spacer chain reduces the probability of a favourable arrangement of σ orbitals.15,17 For triplet energy transfer in bichromophoric ω-aryloxyalkanophenones with flexible tethers, it was found that through-space energy transfer by the exchange mechanism is overwhelmingly predominant19.

  44. G. J. Kavarnos, N. J. Turro, Photosensitization by reversible electron transfer: theories, experimental evidence, and examples, Chem. Rev., 1986, 86, 401–449.

    CAS  Google Scholar 

  45. M. Gisin, J. Wirz, Photolysis of the azo precursors of 2,3- and 1,8-naphthoquinodimethane, Helv. Chim. Acta, 1976, 59, 2273–2277.

    Article  CAS  Google Scholar 

  46. S. J. Hagen, J. Hofrichter, W. A. Eaton, Rate of intrachain diffusion of unfolded cytochrome c, J. Phys. Chem. B, 1997, 101, 2352–2365.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner M. Nau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pischel, U., Huang, F. & Nau, W.M. Intramolecular singlet–singlet energy transfer in antenna-substituted azoalkanes. Photochem Photobiol Sci 3, 305–310 (2004). https://doi.org/10.1039/b311416c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b311416c

Navigation