Skip to main content
Log in

Photochemical behaviour of phenylurea herbicides

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photochemical behaviour of phenylurea herbicides in aqueous solution is highly dependent on the nature and position of substituents on the ring. Most of these herbicides are methylated on the urea moiety, the other substituents are usually halogens or methoxy groups. The main reaction involving the aromatic ring of unhalogenated phenylureas excited at wavelengths shorter than 300 nm is an intramolecular rearrangement, similar to photo-Fries rearrangement, whereas with halogenated derivatives, photohydrolysis is the main transformation pathway. In the particular case of para-halogenated phenylureas, the intermediate formation of a carbene is observed. When the urea moiety is substituted with a methoxyl group, demeth-oxylation is a competitive reaction. N-Demethylation or oxidation of methyl groups is also observed, but with a lower yield. Photooxidation of phenylureas can also be induced by photocatalysis, iron salts or humic substances. In the absence of water, the main route for phototransformation of diuron is the oxidation or elimination of methyl groups. It is entirely possible that a photochemical intermediate could turn out to be more toxic than the initial herbicide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Tomlin, The Pesticide Manual, British Crop Protection Council, Farnham, 12th edn., 2000.

    Google Scholar 

  2. J.-P. Aguer, C. Richard, Transformation of fenuron induced by photochemical excitation of humic acids, Pestic. Sci. 1996, 46, 151–155.

    Article  CAS  Google Scholar 

  3. P. H. Mazzochi, M. P. Rao, Photolysis of 3-(p-chlorophenyl)-1,1-dimethylurea (monuron) and 3-phenyl-1,1-dimethylurea (fenuron), J. Agric. Food Chem. 1972, 20, 957–959.

    Article  Google Scholar 

  4. K. Nick, H. F. Schöler, Photochemical degradation of herbicides in water by UV-radiation generated by Hg low-pressure arcs. Part 2. Phenylurea, Vom Wasser 1996, 86, 57–72.

    CAS  Google Scholar 

  5. D. Kotzias, F. Korte, Photochemistry of phenylurea herbicides and their reactions in the environment, Ecotoxicol. Environ. Saf. 1981, 5, 503–512.

    Article  CAS  PubMed  Google Scholar 

  6. J.-P. Aguer, Caractérisation des Espèces Réactives Mises en Jeu dans les Transformations Photo-Induites par les Acides Humiques. Comparaison Entre les Acides Humiques Naturels et Synthétiques, PhD Thesis, Université Blaise Pascal, Clermont-Ferrand, France, 1995.

    Google Scholar 

  7. C. Richard, S. Bengana, pH effect in the photocatalytic transformation of a phenylurea herbicide, Chemosphere 1996, 33, 635–641.

    Article  CAS  Google Scholar 

  8. C. Tixier, L. Meunier, F. Bonnemoy, P. Boule, Phototransformation of three herbicides: chlorbufam, isoproturon and chlorotoluron. Influence of irradiation on toxicity, Int. J. Photoenergy 2000, 2, 1–8.

    Article  CAS  Google Scholar 

  9. G. Kulshrestha, S. K. Mukerjee, The photochemical decomposition of the herbicide isoproturon, Pestic. Sci. 1986, 17, 489–494.

    Article  CAS  Google Scholar 

  10. P. Dureja, S. Walia, K. K. Sharma, Photolysis of isoproturon in aqueous solution, Toxicol. Environ. Chem. 1991, 34, 65–71.

    Article  CAS  Google Scholar 

  11. M. Millet, W.-U. Palm, C. Zetzsch, Investigation of the photochemistry of urea herbicides (chlorotoluron and isoproturon) and quantum yields using polychromatic irradiation, Environ. Toxicol. Chem. 1998, 17, 258–264.

    Article  CAS  Google Scholar 

  12. S. Parra, J. Olivero, C. Pulgarin, Relationships between physicochemical properties and photoreactivity of four biorecalcitrant phenylurea herbicides in aqueous TiO2 suspension, Appl. Catal., B 2002, 36, 75–85.

    Article  CAS  Google Scholar 

  13. S. Parra, V. Sarria, S. Malato, P. Péringer, C. Pulgarin, Photochemical versus coupled photochemical-biological flow system for the treatment of two biorecalcitrant herbicides: metobromuron and isoproturon, Appl. Catal., B 2000, 27, 153–168.

    Article  CAS  Google Scholar 

  14. V. Faure, Phototransformation de Composés de Type Chlorophénylurée et Chlorophénylcarbamate, PhD Thesis, Université Blaise Pascal, Clermont-Ferrand, France, 1996.

    Google Scholar 

  15. A. Boulkamh, T. Sehili, P. Boule, Main pathways in the photochemical transformation of 3-(4-bromophenyl)-1-methoxy-1-methylurea (metobromuron) in aqueous solution, J. Photochem. Photobiol., A 2001, 143, 191–199.

    Article  CAS  Google Scholar 

  16. J. D. Rosen, R. F. Strusz, Photolysis of 3-(p-bromophenyl)-1-methoxy-1-methylurea, J. Agric. Food Chem. 1968, 16, 568–570.

    Article  CAS  Google Scholar 

  17. F. S. Tanaka, R. G. Wien, B. L. Hoffer, Biphenyl formation in the photolysis of 3-(4-chlorophenyl)-1,1-dimethylurea (monuron) in aqueous solution, J. Agric. Food Chem. 1981, 29, 1153–1158.

    Article  CAS  Google Scholar 

  18. D. G. Crosby, C. S. Tang, Photodecomposition of 3-(p-chlorophenyl)-1,1-dimethylurea (monuron), J. Agric. Food Chem. 1969, 17, 1041–1044.

    Article  CAS  PubMed  Google Scholar 

  19. F. Bonnemoy, B. Lavédrine and A. Boulkamh, Influence of UV irradiation on the toxicity of phenylurea herbicides using Microtox® test, Chemosphere, in press.

  20. A. Boulkamh, D. Harakat, T. Sehili, P. Boule, Phototransformation of metoxuron [3-(3-chloro-4-methoxyphenyl)-1,1-dimethylurea] in aqueous solution, Pest Manage. Sci. 2001, 57, 1119–1126.

    Article  CAS  Google Scholar 

  21. A. Amine-Khodja, B. Lavédrine, C. Richard, T. Sehili, Photocatalytic degradation of metoxuron in aqueous suspensions of TiO2. Analytical and kinetic studies, Int. J. Photoenergy 2002, 4, 147–151.

    Article  Google Scholar 

  22. J. D. Rosen, R. F. Strusz, C. C. Still, Photolysis of phenylurea herbicides, J. Agric. Food Chem. 1969, 17, 206–207.

    Article  CAS  Google Scholar 

  23. F. S. Tanaka, R. G. Wien, R. G. Zaylskie, Photolysis of 3-(4-chlorophenyl)-1,1-dimethylurea in dilute aqueous solution, J. Agric. Food Chem. 1977, 25, 1068–1072.

    Article  CAS  Google Scholar 

  24. F. S. Tanaka, R. G. Wien, B. L. Hoffer, Investigation of the mechanism and pathway of biphenyl formation in the photolysis of monuron, J. Agric. Food Chem. 1982, 30, 957–963.

    Article  CAS  Google Scholar 

  25. A. Boulkamh, C. Richard, Photochemical transformation of aqueous para-halogenophenylureas: evidence for the intermediary formation of carbenes, New J. Chem. 2000, 24, 849–851.

    Article  Google Scholar 

  26. F. S. Tanaka, R. G. Wien, E. R. Mansager, Effect of nonionic surfactants on the photochemistry of 3-(4-chlorophenyl)-1,1-dimethylurea in aqueous solution, J. Agric. Food Chem. 1979, 27, 774–779.

    Article  CAS  Google Scholar 

  27. E. Pramauro, M. Vincenti, V. Augugliaro, L. Palmisano, Photocatalytic degradation of monuron in aqueous TiO2 dispersions, Environ. Sci. Technol. 1993, 27, 1790–1795.

    Article  CAS  Google Scholar 

  28. V. Faure, P. Boule, Phototransformation of linuron and chlorbromuron in aqueous solution, Pestic. Sci. 1997, 51, 413–418.

    Article  CAS  Google Scholar 

  29. F. S. Tanaka, B. L. Hoffer, R. G. Wien, Photolysis of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron) in dilute aqueous solution, Toxicol. Environ. Chem. 1986, 11, 261–269.

    Article  CAS  Google Scholar 

  30. J. Jirkovský, V. Faure, P. Boule, Photolysis of diuron, Pestic. Sci. 1997, 50, 42–52.

    Article  Google Scholar 

  31. G. Durand, D. Barceló, J. Albaiges, M. Mansour, On the photolysis of selected pesticides in the aquatic environment, Toxicol. Environ. Chem. 1991, 31–32, 55–62.

    Article  Google Scholar 

  32. V. Faure, P. Boule, Influence of methanol on the photolysis of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron) in aqueous solution, Toxicol. Environ. Chem. 1997, 63, 171–174.

    Article  CAS  Google Scholar 

  33. P. Mazellier, J. Jirkovský, M. Bolte, Degradation of diuron photoinduced by iron (III) in aqueous solution, Pestic. Sci. 1997, 49, 259–267.

    Article  CAS  Google Scholar 

  34. C. Tixier, M. Sancelme, F. Bonnemoy, A. Cuer, H. Veschambre, Degradation products of a phenylurea herbicide, diuron: synthesis, ecotoxicity, and biotransformation, Environ. Toxicol. Chem. 2001, 20, 1381–1389.

    Article  CAS  PubMed  Google Scholar 

  35. R. Frank, W. Klöpffer, Spectral solar photon irradiance in Central Europe and adjacent North Sea, Chemosphere 1988, 17, 985–994.

    Article  Google Scholar 

  36. H. Shizuka, I. Tanaka, Photochemistry of acetanilide. IV. The photochemical reactions in the vapor phase and rigid matrixes, Bull. Chem. Soc. Jpn. 1969, 42, 909–913.

    Article  CAS  Google Scholar 

  37. M. J. Climent, M. A. Miranda, Photodegradation of dichlorprop and 2-naphtoxyacetic acid in water. Combined GC-MS and GC-FTIR study, J. Agric. Food Chem. 1997, 45, 1916–1919.

    Article  CAS  Google Scholar 

  38. A. Zertal, T. Sehili, P. Boule, Phototransformation of 4-chloro-2-methylphenoxyacetic acid (MCPA), Z. Phys. Chem. 1999, 213, 87–92.

    Article  CAS  Google Scholar 

  39. A. Zertal, T. Sehili, P. Boule, Photochemical behaviour of 4-chloro-2-methylphenoxyacetic acid. Influence of pH and irradiation wavelength, J. Photochem. Photobiol., A 2001, 146, 37–48.

    Article  CAS  Google Scholar 

  40. L. Meunier, P. Boule, Direct and induced phototransformation of mecoprop [2-(4-chloro-2-methylphenoxy)-propionic acid] in aqueous solution, Pest Manage. Sci. 2000, 56, 1077–1085.

    Article  CAS  Google Scholar 

  41. L. L. Chang, B. Y. Giang, K. S. Lee, C. K. Tseng, Aqueous photolysis of napropamide, J. Agric. Food Chem. 1991, 39, 617–621.

    Article  CAS  Google Scholar 

  42. J.-P. Aguer, P. Boule, F. Bonnemoy, J. M. Chezal, Phototransformation of Napropamide [N,N-diethyl-2-(1-naphthyloxy) propionamide] in aqueous solution: influence on the toxicity of solutions, Pestic. Sci. 1998, 54, 253–257.

    Article  CAS  Google Scholar 

  43. P. Boule, C. Guyon, J. Lemaire, Photochemistry and environment. IV-Photochemical behaviour of monochlorophenols in dilute aqueous solution, Chemosphere 1982, 11, 1179–1188.

    Article  CAS  Google Scholar 

  44. K. David-Oudjehani, P. Boule, Photolysis of halophenols in aqueous solution sensitised by hydroquinone or phenol, New J. Chem. 1995, 19, 199–206.

    CAS  Google Scholar 

  45. B. David, M. Lhote, V. Faure, P. Boule, Ultrasonic and photochemical degradation of chlorpropham and 3-chloroaniline in aqueous solution, Water Res. 1998, 32, 2451–2461.

    Article  CAS  Google Scholar 

  46. P. Boule, K. Othmen, C. Richard, B. Szczepanik, G. Grabner, Phototransformation of halogenoaromatic derivatives in aqueous solution, Int. J. Photoenergy 1999, 1, 49–53.

    Article  CAS  Google Scholar 

  47. G. Grabner, C. Richard, G. Köhler, Formation and reactivity of 4-oxocyclohexa-2,5- dienylidene in the photolysis of 4-chlorophenol in aqueous solution at ambient temperature, J. Am. Chem. Soc. 1994, 116, 11-470–11-480.

    Article  CAS  Google Scholar 

  48. K. Othmen, P. Boule, B. Szczepanik, K. Rotkiewicz, G. Grabner, Photochemistry of 4-chloroaniline in solution. Formation and kinetic properties of a new carbene, 4-iminocyclohexa-2,5-dienylidene, J. Phys. Chem. A 2000, 104, 9525–9534.

    Article  CAS  Google Scholar 

  49. P. Boule, unpublished results.

  50. G. V. Buxton, C. L. Greenstock, W. P. Helman, A. B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (?OH/?O-) in aqueuous solution, J. Phys. Chem. Ref. Data 1998, 17, 513–886.

    Article  Google Scholar 

  51. E. J. Land, M. Ebert, Pulse radiolysis studies of aqueous phenol. Water elimination from dihydroxycycloheptadienyl radicals to form phenoxyl, Trans. Faraday Soc. 1967, 63, 1181–1190.

    Article  CAS  Google Scholar 

  52. N. Getoff, S. Solar, Radiolysis and pulse radiolysis of chlorinated phenols in aqueous solution, Radiat. Phys. Chem. 1986, 28, 443–450.

    CAS  Google Scholar 

  53. C. Tixier, M. Sancelme, S. Aït-Aïssa, P. Widehem, F. Bonnemoy, A. Cuer, N. Truffaut, H. Veschambre, Biotransformation of phenylurea herbicides by a soil bacterial strain, Arthrobacter sp. N2: structure, ecotoxicity and fate of diuron metabolite with soil fungi, Chemosphere 2002, 46, 519–526.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Boule.

Additional information

† Dedicated to Professor Jean Kossanyi in recognition of his outstanding contribution to the development of photochemistry and for his devoted service to both the EPA and the French Group of Photochemistry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amine-Khodja, A., Boulkamh, A. & Boule, P. Photochemical behaviour of phenylurea herbicides. Photochem Photobiol Sci 3, 145–156 (2004). https://doi.org/10.1039/b307968f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b307968f

Navigation