Skip to main content
Log in

A topologically new ruthenium porphyrin—fullerene donor—acceptor ensemble

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A novel ruthenium porphyrin complex bearing an axially coordinated fullerene ligand (RuP-C60), that is, a fulleropyrrolidine that bears a pyridine moiety, was developed as an artificial reaction center mimic. Generally, the new donor-acceptor dyad gives rise to rapid intramolecular deactivation of the ruthenium porphyrin triplet excited state, which evolves from instantaneous intersystem crossing. The product of the ruthenium porphyrin excited-state deactivation depends on the solvent polarity. While in non-polar solvents a transduction of triplet excited energy predominates, in medium and strongly polar media, charge-separation leads to the formation of RuP˙+-C60˙.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. Molecular Electronic Devices, ed. F. L. Carter, Dekker, New York, 1987.

    Google Scholar 

  2. Photoinduced Electron Transfer, ed. M. A. Fox and M. Channon, Elsevier, Amsterdam, 1988.

    Google Scholar 

  3. Photochemical Conversion and Storage of Solar Energy, ed. E. Pelizzetti and M. Schiavello, Kluwer, Dordrecht, 1997.

    Google Scholar 

  4. Nanoparticles in Solids and Solutions, ed. J. H. Fendler and I. Dekany, Kluwer, Dordrecht, 1996.

    Google Scholar 

  5. Semiconductor Nanoclusters, ed. P. V. Kamat and D. Meisel, Elsevier, Amsterdam, 1997.

    Google Scholar 

  6. Nanoparticle and Nanostructured Films, ed. J. H. Fendler, Wiley-VCH, Weinheim, 1998.

    Google Scholar 

  7. The Photosynthetic Reaction Center, ed. J. Deisenhofer and J. R. Norris, Academic Press, New York, 1993.

    Google Scholar 

  8. Electron Transfer in Chemistry Vol. I–V, ed. V. Balzani, Wiley-VCH, Weinheim, 2001.

    Google Scholar 

  9. The Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith and R. Guilard, Academic Press, New York, 1999.

    Google Scholar 

  10. Fullerenes and Related Structures, ed. A. Hirsch, Top. Curr. Chem. Vol. 199, Springer, Berlin, 1999.

  11. H. Imahori and Y. Sakata, Donor-linked fullerenes: photoinduced electron transfer and its potential application, Adv. Mater., 1997, 9, 537–546.

    Article  CAS  Google Scholar 

  12. M. Prato, [60]Fullerene chemistry for materials science applications, J. Mater. Chem., 1997, 7, 1097–1109.

    Article  CAS  Google Scholar 

  13. N. Martin, L. Sanchez, B. Illescas and I. Perez, C60-based electroactive organofullerenes, Chem. Rev., 1998, 98, 2527–2547.

    Article  CAS  PubMed  Google Scholar 

  14. H. Imahori and Y. Sakata, Fullerenes as novel accepters in photosynthetic electron transfer, Eur. J. Org. Chem., 1999, 2445–2457.

    Google Scholar 

  15. D. M. Guldi, Fullerenes: three dimensional electron acceptor materials, Chem. Commun., 2000, 321–327.

    Google Scholar 

  16. C. A. Reed and R. D. Bolskar, Discrete fulleride anions and fullerenium cations, Chem. Rev., 2000, 100, 1075–1119.

    Article  CAS  PubMed  Google Scholar 

  17. D. Gust, T. A. Moore and A. L. Moore, Mimicking bacterial photosynthesis, J. Photochem. Photobiol., B, 2000, 58, 63–71.

    Article  CAS  Google Scholar 

  18. D. Gust, T. A. Moore and A. L. Moore, Mimicking photosynthetic solar energy transduction, Acc. Chem. Res., 2001, 34, 40–48.

    CAS  PubMed  Google Scholar 

  19. D. M. Guldi and S. Fukuzumi, Electron transfer in electron donor-acceptor ensembles containing porphyrins and metalloporphyrins, J. Porphyrins Phthalocyanines, 2002, 6, 289–295.

    Article  CAS  Google Scholar 

  20. D. M. Guldi and K.-D. Asmus, Electron transfer from C76 (C-2v′) and C78 (D-2) to radical cations of various arenes: evidence for the Marcus inverted region, J. Am. Chem. Soc., 1997, 119, 5744–5745.

    Article  CAS  Google Scholar 

  21. H. Imahori, K. Hagiwara, T. Akiyama, M. Aoki, S. Taniguchi, T. Okada, M. Shirakawa and Y. Sakata, The small reorganization energy of C60 in electron transfer, Chem. Phys. Lett., 1996, 263, 545–550.

    Article  CAS  Google Scholar 

  22. D. M. Guldi, Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models, Chem. Soc. Rev., 2002, 31, 22–36.

    Article  CAS  PubMed  Google Scholar 

  23. T. J. Kesti, N. V. Tkachenko, V. Vehmanen, H. Yamada, H. Imahori, S. Fukuzumi and H. Lemmetyinen, Exciplex intermediates in photoinduced electron transfer of porphyrin-fullerene dyads, J. Am. Chem. Soc., 2002, 124, 8067–8077.

    Article  CAS  PubMed  Google Scholar 

  24. F. Vögtle, Supramolecular Chemistry, Wiley, Chichester, 1991.

    Google Scholar 

  25. J. M. Leh, Supramolecular Chemistry - Concepts and Perspectives, VCH, Weinheim, 1995.

    Google Scholar 

  26. J. W. Steed and J. L. Atwood, Supramolecular Chemistry, Wiley, Chichester, 2000.

    Google Scholar 

  27. F. Diederich and R. Kessinger, Templated regioselective and stereoselective synthesis in fullerene chemistry, Acc. Chem. Res., 1999, 32, 537–545.

    Article  CAS  Google Scholar 

  28. D. M. Guldi and N. Martin, Fullerene architectures made to order; biomimetic motifs–design and features, J. Mater. Chem., 2002, 12, 1978–1992.

    Article  CAS  Google Scholar 

  29. J. R. Miller and G. D. Dorough, Pyridinate complexes of some metallo-derivatives of tetraphenylporphine and tertaphenylchlorin, J. Am. Chem. Soc., 1952, 74, 3977–3981.

    Article  CAS  Google Scholar 

  30. S. S. Eaton, G. R. Eaton and R. H. Holm, Inter- and intramolecular ligand exchange reactions of ruthenium(II) carbonyl porphine complexes with nitrogen bases, J. Organomet. Chem., 1972, 39, 179–195.

    Article  CAS  Google Scholar 

  31. T. Da Ros, M. Prato, D. M. Guldi, M. Ruzzi and L. Pasimeni, Efficient charge separation in porphyrin-fullerene-ligand complexes, Chem. Eur. J., 2001, 7, 816–827.

    Article  CAS  PubMed  Google Scholar 

  32. S. R. Wilson, S. MacMahon, F. T. Tat, P. D. Jarowski and D. I. Schuster, Synthesis and photophysics of a linear non-covalently linked porphyrin-fullerene dyad, Chem. Commun., 2003, 226–227.

    Google Scholar 

  33. F. D’Souza, G. R. Deviprasad, M. S. Rahman and J. P. Choi, Self-assembled porphyrin-C60 and porphycene-C60 complexes via metal axial coordination, Inorg. Chem., 1999, 38, 2157–2160.

    Article  PubMed  Google Scholar 

  34. N. Armaroli, F. Diederich, L. Echegoyen, T. Habicher, L. Flamigni, G. Marconi and J.-F. Nierengarten, A new pyridyl-substituted methanofullerene derivative. Photophysics, electrochemistry and self-assembly with zinc(II) meso-tetraphenylporphyrin (ZnTPP), New J. Chem, 1998, 23, 77–83.

    Article  Google Scholar 

  35. MOE version 2003.02, Chemical Computing Group Inc., Montreal, Canada, 2003.

    Google Scholar 

  36. W. L. Jorgensen, D. S. Maxwell and J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc., 1996, 118, 11225–11236.

    Article  CAS  Google Scholar 

  37. M. Prato and M. Maggini, Fulleropyrrolidines: A family of full-fledged fullerene derivatives, Acc. Chem. Res., 1998, 31, 519–526.

    Article  CAS  Google Scholar 

  38. N. Tagmatarchis and M. Prato, The addition of azomethine ylides to [60]fullerene leading to fulleropyrrolidines, Synlett, 2003, 6, 768–779.

    Google Scholar 

  39. C. D. Tait, D. Holton, M. H. Barley, D. Dolphin and B. R. James, Picosecond studies of ruthenium(II) and ruthenium(III) porphyrin photophysics, J. Am. Chem. Soc., 1985, 107, 1930–1934.

    Article  CAS  Google Scholar 

  40. M. Ikonen, D. Guez, V. Marvaud and D. Markovitsi, Photophysical properties of monomeric and oligomeric ruthenium(II) porphyrins, Chem. Phys. Lett., 1994, 231, 93–97.

    Article  CAS  Google Scholar 

  41. D. P. Rillema, J. K. Nagle, L. F. Barringer and T. J. Meyer, Redox properties of metalloporphyrin excited-states, lifetimes, and related properties of a series of para-substituted tetraphenylporphine carbonyl-complexes of ruthenium (II), J. Am. Chem. Soc., 1988, 103, 56–62.

    Article  Google Scholar 

  42. J. Rodriguez, C. Kirmaier and D. Holton, Optical properties of metalloporphyrin excited states, J. Am. Chem. Soc., 1989, 111, 6500–6506.

    Article  CAS  Google Scholar 

  43. D. M. Guldi, T. Da Ros, P. Braiuca, M. Prato and E. Alessio, C60 in the box. A supramolecular C60-porphyrin assembly, J. Mater. Chem., 2002, 12, 2001–2008.

    Article  CAS  Google Scholar 

  44. A. Prodi, M. T. Indelli, C. J. Kleverlaan, F. Scandola, E. Alessio, T. Gianferrara and L. G. Marzilli, Side-to-face ruthenium porphyrin arrays: Photophysical behavior of dimeric and pentameric systems, Chem. Eur. J., 1999, 5, 2668–2679.

    Article  CAS  Google Scholar 

  45. D. M. Guldi and M. Prato, Excited-state properties of C60 fullerene derivatives, Acc. Chem. Res., 2000, 33, 695–703.

    Article  CAS  PubMed  Google Scholar 

  46. F Hauke A Hirsch S G Liu L Echegoyen A Swartz C Luo D M Guldi F Hauke A Hirsch S G Liu L Echegoyen A Swartz C Luo D M Guldi (2002) ArticleTitleEvidence of pronounced electronic coupling in a directly bonded fullerene-ferrocene dyad Chem. Phys. Chem. 3 195 Occurrence Handle1:CAS:528:DC%2BD38XhvVels7g%3D Occurrence Handle12503126 Occurrence Handle10.1002/1439-7641(20020215)3:2<195::AID-CPHC195>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dirk M. Guldi or Maurizio Prato.

Additional information

This paper is dedicated to Professor Fred Lewis on the event of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guldi, D.M., Da Ros, T., Braiuca, P. et al. A topologically new ruthenium porphyrin—fullerene donor—acceptor ensemble. Photochem Photobiol Sci 2, 1067–1073 (2003). https://doi.org/10.1039/b307269j

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b307269j

Navigation