Skip to main content

Advertisement

Log in

Enhancement of the blood growth promoting activity after exposure of volunteers to visible and infrared polarized light. Part I: stimulation of human keratinocyte proliferation in vitro

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The systemic mechanisms of the wound healing effect of low intensity lasers remain largely uninvestigated. The goal of this randomized, placebo controlled, double blind study is to prove that irradiation of a small area of the human body with visible and infrared polarized (VIP) light (400–3400 nm, 95% polarization, 40 mW cm2, 12 J cm2) leads to an increase of the growth promoting (GP) activity of the entire circulating blood for primary cultures of human keratinocytes (KCs).

Thirty minutes after the VIP-irradiation of a sacral area of volunteers, the GP activity of circulating blood was seen to increase through the elevation of the number of KCs cultured with the isolated plasma by 20 ± 3%, p < 0.001. A similar increase in GP activity was seen in plasma derived from the in vitro irradiated blood of each volunteer, and from the mixture of irradiated and non-irradiated autologous blood (1 : 10). Enhanced GP activity was also recorded at 24 h after the 1st and 4–9th daily phototherapeutic sessions. Hence, exposure of volunteers to VIP light leads to a fast increase in the GP activity of the entire circulating blood for human KCs in vitro, which is a consequence of the transcutaneous photomodification of blood and its effect on the rest of the circulating blood volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Braverman, R. J. McCarthy, A. D. Ivankovich, D. E. Forde, M. Overfield and M. Bapna, Effect of helium-neon and infrared laser irradiation on wound healing in rabbits, Lasers Surg. Med., 1989, 9, 50–58.

    Article  CAS  PubMed  Google Scholar 

  2. S. Rochkind, M. Rousso, M. Nissan, M. Villarreal, L. Barr-Nea and D. G. Rees, Systemic effects of low power laser irradiation on the peripheral and central nervous system, cutaneous wounds and burns, Lasers Surg. Med., 1989, 9, 174–182.

    Article  CAS  PubMed  Google Scholar 

  3. A. Mester, E. Mester and A. Mester, Open wound healing - bedsores, ulcus cruris, burns - with systemic effects of LLLT, in Lasers in medicine and dentistry, ed. Z. Simunovic, Vitagraf, Rijeka, 2000, pp. 227–244.

    Google Scholar 

  4. Low level laser therapy. Clinical practice and scientific background, ed. J. Tuner and L. Hode, Prima Books, Grängsberg, 2002, pp. 76–175, 287–312.

    Google Scholar 

  5. A. Schindl, G. Heinze, M. Schindl, H. Pernerstorfer-Schon and L. Schindl, Systemic effects of low intensity laser irradiation on skin microcirculation in patients with diabetic microangiopathy, Microvasc. Res., 2002, 64, 240–246.

    Article  PubMed  Google Scholar 

  6. B. S. Briskin, I. M. Aliev, A. K. Polonski, N. N. Khachatarian and I. V. Stupin, Immunomodulation by laser irradiation in immunodeficiency, Laser Ther., 1996, 8, 67–68.

    Google Scholar 

  7. S. G. Onuchin, Y. V. Benenson, S. G. Belousov, Y. L. Onuchina, Y. D. Utyomova, S. M. Zyazina and N. Y. Mironycheva, Immunological efficacy of low energy helium-neon laser therapy in patients with diabetes mellitus, Laser Ther., 1996, 8, 73–74.

    Google Scholar 

  8. M. I. Kovalyov, Dynamics of prolactin, gonadotrophin, and sexual steroids in the parturient’s blood serum during laser therapy, Laser Med., 2000, 4, 40–42.

    Google Scholar 

  9. P. Van der Veen and P. Lievens, Low level laser therapy (LLLT): the influence on the proliferation of fibroblasts and the influence on the regeneration process of lymphatic, muscular and cartilage tissue, in Lasers in medicine and dentistry, ed. Z. Simunovic, Vitagraf, Rijeka, 2000, pp. 187–215.

    Google Scholar 

  10. K. A. Samoilova, K. D. Obolenskaya, A. V. Vologdina, S. A. Snopov and E. V. Shevchenko, Single skin exposure to visible polarized light induces rapid modification of entire circulating blood. 1. Improvement of rheologic and immune parameters, Proc. SPIE, 1998, 3569, 90–103.

    Article  Google Scholar 

  11. J. F. Ennever, Phototherapy for neonatal jaundice, J. Photochem. Photobiol., 1988, 47, 871–876.

    Article  CAS  Google Scholar 

  12. G. Frick, Fibel der Ultraviolett Bestrahlung des Blutes, Hans Müller-Verlag, München, 1993, pp. 48–63.

    Google Scholar 

  13. V. I. Karandashov and E. V. Petukhov, in Ultraviolet irradiation of blood, Meditsina, Moscow, 1997, pp. 34–186.

    Google Scholar 

  14. M. Fenyo, Theoretical and experimental basis of biostimulation, Optics Laser Technol., 1984, 16, 209–215.

    Article  Google Scholar 

  15. T. I. Karu, Photobiological fundamentals of low power laser, J. Quantum Electron., 1987, 23, 1703–1717.

    Article  Google Scholar 

  16. T. Kubasova, M. Horvath, K. Kocsis and M. Fenyo, Effect of visible light on some cellular and immune parameters, Immunol. Cell Biol., 1995, 73, 239–244.

    Article  CAS  PubMed  Google Scholar 

  17. P. Bolton, M. Dyson and S. Young, The effect of polarized light on the release of growth factors from the U-937 macrophage-like cell line, Laser Ther., 1992, 4, 33–37.

    Article  Google Scholar 

  18. K. A. Flemming, N. A. Cullum and E. A. Nelson, A systemic review of laser therapy for venous leg ulcers, J. Wound Care, 1999, 8, 111–114.

    Article  CAS  PubMed  Google Scholar 

  19. L. Medenica and M. Lens, The use of polarised polychromatic non-coherent light alone as a therapy for venous leg ulceration, J. Wound Care, 2003, 12, 37–40.

    Article  CAS  PubMed  Google Scholar 

  20. J. G. Rheinwald and H. Green, Serial cultivation of a strain of human epidermal keratinocytes: the formation of keratinizing colonies from single cells, Cell, 1975, 6, 331–334.

    Article  CAS  PubMed  Google Scholar 

  21. N. M. Yudintzeva, J. V. Gorelic, I. A. Diakonov, N. V. Kalmykova, M. I. Blinova, G. P. Pinaev and B. A. Paramonov, Transplantation of allogen keratinocyte sheets on burns, Tsitologiia, 1999, 41, 328.

    Google Scholar 

  22. T. Mosman, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods, 1983, 65, 55–63.

    Article  Google Scholar 

  23. W. Kueng, E. Silber and U. Eppenberger, Quantification of cells cultured on 96-well plates, Anal. Biochem., 1989, 182, 16–29.

    Article  CAS  PubMed  Google Scholar 

  24. K. A. Samoilova, A. Yu. Zaritskii, E. R. Stankevich and A. P. Mironova, Effect of UV-irradiated donor blood on the colony-forming ability of human bone marrow cells in culture, Tsitologiia, 1985, 27, 488–492.

    CAS  PubMed  Google Scholar 

  25. I. I. Firulina, K. A. Samoilova and N. K. Belisheva, Enhancement of the growth promoting properties of UV-irradiated blood. I Dependence on the irradiation dose, initial cell growth promoting potention of blood, and functional state of target cells, Tsitologiia, 1987, 7, 818–824.

    Google Scholar 

  26. A. P. Savage, V. K. Chatterjee, H. Gregory and S. R. Bloom, Epidermal growth factor in blood, Regul. Pept., 1986, 30, 199–206.

    Article  Google Scholar 

  27. J. Kiaru, L. Viinikka, G. Myllyla, K. Pesonen and J. Perheentupa, Cytoskeleton-dependent release of human platelet epidermal growth factor, Life Sci., 1991, 49, 1997–2003.

    Article  Google Scholar 

  28. I. A. Utz, S. R. Utz and V. V. Tuchin, Effects of low energy laser biostimulation on rheological properties of blood, Proc. SPIE, 1992, 1983, 83–90.

    Google Scholar 

  29. A. G. Brill, G. E. Brill and V. F. Kirichuk, Effect of He-Ne irradiation on platelet activation and aggregation, Bull. Exp. Biol. Med., 1999, 7, 48–50.

    Google Scholar 

  30. M. Olban, B. Wachowicz, M. Koter and M. Bryszewska, The biostimulatory effect of red laser irradiation on pig blood platelet function, Cell Biol. Int., 1998, 22, 245–248.

    Article  CAS  PubMed  Google Scholar 

  31. P. G. W. Gettins and B. C. Crews, Epidermal growth factor binding to human α2-Macroglobulin. Implications for α2-Macroglobulin-growth factor interactions, Biochemistry, 1993, 32, 7916–7921.

    Article  CAS  PubMed  Google Scholar 

  32. C. T. Chu and S. V. Pizzo, α2-Macroglobulin, complement and biologic defense: antigens, growth factors, microbial proteases, and receptor legation, Lab. Invest., 1994, 71, 792–812.

    CAS  PubMed  Google Scholar 

  33. J. C. Bonner, M. Hoffman and A. R. Brody, Alpha-2-macroglobulin secreted by alveolar macrophages serves as a binding protein for a macrophage-derived homologue of platelet-derived growth factor, Am. J. Resp. Cell Mol. Biol., 1989, 1, 171–179.

    Article  CAS  Google Scholar 

  34. S. S. Huang, P. O’Crady and J. S. Huang, Human transforming growth factor beta. alpha-2-macroglobulin complex is a latent form of transforming growth factor beta, J. Biol. Chem., 1988, 25, 1535–1541.

    Article  Google Scholar 

  35. W. Borth, R. Feinman, S. Gonias, J. Quigly and D. Strickland, Biology of α2-macroglobulin, its receptor and related proteins, Ann. N. Y. Acad. Sci., 1994, 737, 1–521.

    Article  Google Scholar 

  36. S. M. Wu, D. D. Patel and S. V. Pizzo, Oxidized α2-macroglobulin (α2M) differentially regulate receptor binding by cytokines/growth factors: implications for tissue injury and repair mechanisms in inflammation, J. Immunol., 1998, 15, 4356–4365.

    Google Scholar 

  37. N. Grossman, N. Schneid, H. Reuveni, S. Halevy and R. Lubart, 780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species, Lasers Surg. Med., 1998, 22, 212–218.

    Article  CAS  PubMed  Google Scholar 

  38. R. Lubart, H. Friedmann, R. Lavie, N. Grossmann, M. Sinyakov and S. Belotsky, Effect of visible light on reactive oxygen species production, Laser Technol., 2000, 10, 7–11.

    Google Scholar 

  39. A. Grőne, Keratinocytes and cytokines, Vet. Immunol. Immunopathol., 2002, 88, 1–12.

    Article  PubMed  Google Scholar 

  40. J. Massague and A. Pandiella, Membrane-anchored growth factors, Annu. Rev. Biochem., 1993, 62, 515–541.

    Article  CAS  PubMed  Google Scholar 

  41. S. Tokumaru, S. Higashiyama, T. Endo, T. Nakagawa, J. I. Miyagawa, K. Yamamori, Y. Hanakawa, H. Ohmoto, K. Yoshino, Y. Shirakata, Y. Matsuzawa, K. Hashimoto and N. Taniguchi, Ectodomain shedding of epidermal growth factor receptor ligands is required for keratinocyte migration in cutaneous wound healing, J. Cell Biol., 2000, 16, 209–220.

    Article  Google Scholar 

  42. H. S. Yu, K. L. Chang, C. L. Yu, J. W. Chen and G. S. Chen, Low-energy helium-neon laser irradiation stimulates interleukin-1 alpha and interleukin-8 release from cultured human keratinocytes, J. Invest. Dermatol., 1996, 107, 593–596.

    Article  CAS  PubMed  Google Scholar 

  43. N. Maas-Szabowski, H. Stark and N. E. Fusenig, Keratinocyte growth regulation in defined organotypic cultures through IL-1-induced keratinocyte growth factor expression in resting fibroblasts, J. Invest. Dermatol., 2000, 114, 1075–1084.

    Article  CAS  PubMed  Google Scholar 

  44. I. A. Gamaley and I. V. Klyubin, Roles of reactive oxygen species: signaling and regulating of cellular functions, Int. Rev. Cytol., 1999, 188, 203–255.

    Article  CAS  PubMed  Google Scholar 

  45. H. Sauer, M. Wartenberg and J. Hescheler, Reactive oxygen species as intracellular messengers during cell growth and differentiation, Cell Physiol. Biochem., 2001, 11, 173–186.

    Article  CAS  PubMed  Google Scholar 

  46. M. Reth, Hydrogen peroxide as second messenger in lymphocyte activation, Nat. Immunol., 2002, 3, 1129–1134.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kira A. Samoilova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samoilova, K.A., Bogacheva, O.N., Obolenskaya, K.D. et al. Enhancement of the blood growth promoting activity after exposure of volunteers to visible and infrared polarized light. Part I: stimulation of human keratinocyte proliferation in vitro. Photochem Photobiol Sci 3, 96–101 (2004). https://doi.org/10.1039/b305738k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b305738k

Navigation