Skip to main content
Log in

UVA activated 8-MOP and chlorpromazine inhibit release of TNF-α by post-transcriptional regulation

  • Communication
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

There is evidence that regulation of inflammatory cytokines is among the immunomodulatory effects of photochemotherapy with 8-MOP and UVA. We have recently demonstrated that in the monocytoid cell line U937 incubation with 8-MOP and subsequent exposure to UVA is able to efficiently downregulate the release of TNF-α into the culture supernatant. Chlorpromazine, a well known photosensitising drug, was even more potent with regard to this effect. Based on these observations, in this study we further investigate the mechanisms of TNF-α inhibition by 8-MOP and CPZ photosensitization. For this purpose we determined intracellular protein levels and gene expression of TNF-α by western blot and quantitative real-time PCR, respectively. Our results indicate that the observed inhibition of TNF-α secretion after photochemotherapy is not due to downregulation of gene transcription but rather to a post-transcriptional mechanism. The observed decrease of intracellular TNF-α with CPZ and 8-MOP points to decreased protein synthesis or enhanced degradation. These findings demonstrate that posttranscriptional regulation of cytokine expression is a possible mechanism of action of photochemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. R. Knobler and P. Heald, Extracorporeal photoimmunochemotherapy, in Dermatological phototherapy and photodiagnostic methods, ed. J. Krutmann et al., Springer-Verlag, Berlin–Heidelberg, 2001, pp. 248–260

    Chapter  Google Scholar 

  2. P. Neuner B. Charvat R. Knobler R. Kirnbauer A. Schwarz T. Luger T. Schwarz Cytokine release by peripheral blood mononuclear cells is affected by 8-methoxypsoralen plus UVA Photochem. Photobiol. 1994 59 182–188

    Article  CAS  Google Scholar 

  3. Y. Tokura Modulation of cytokine production by 8-MOP and UVA J. Dermatol. Sci. 1999 19 114–122

    Article  CAS  Google Scholar 

  4. B. R. Vowels C. Maureen M. H. Boufal L. J. Walsh A. H. Rook Extracorporeal photochemotherapy induces the production of tumor necrosis factor-a by monocytes: implication for treatment of cutaneous T-cell lymphoma and systemic sclerosis J. Invest. Dermatol. 1992 98 686–692

    Article  CAS  Google Scholar 

  5. J. Vilcek T. H. Lee Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions J. Biol. Chem. 1991 266 7313–7316

    Article  CAS  Google Scholar 

  6. K. J. Tracey A. C. Cerami Tumor necrosis factor, other cytokines and disease Annu. Rev. Cell Biol. 1993 9 317–343

    Article  CAS  Google Scholar 

  7. F. Trautinger F. Hammerle A. G. Pöschl M. Micksche Respiratory burst capability of polymorphonuclear neutrophils and TNF-a serum levels in relationship to the development of septic syndrome in critically ill patients J. Leukocyte Biol. 1991 49 449–454

    Article  CAS  Google Scholar 

  8. E. Gocke Review of the genotoxic properties of chlorpromazine and related phenothiazines Mutat. Res. 1996 366 9–21

    Article  Google Scholar 

  9. R. D. Hall G. R. Buettner C. F. Chignell The biphotonic photoionization of chlorpromazine during conventional flash photolysis: spin trapping results with 5,5-dimethyl-1-pyrroline-N-oxide Photochem. Photobiol. 1991 54 167–173

    Article  CAS  Google Scholar 

  10. H. P. van Iperen G. M. J. Beijersbergen van Henegouwen Chlorpromazine, a candidate drug for photopheresis J. Photochem. Photobiol., B: Biol. 1996 34 217–224

    Article  Google Scholar 

  11. A. Wolnicka-Glubisz J. M. Rijnkels T. Sarna G. M. J. Beijersbergen van Henegouwen Apoptosis in leukocytes induced by UVA in the presence of 8-methoxypsoralen, chlorpromazine or 4,6,4’-trimethylangelicine J. Photochem. Photobiol., B: Biol. 2002 68 65–72

    Article  CAS  Google Scholar 

  12. A. Wolnicka T. Sarna R. Knobler F. Trautinger Differential effect of 8-methoxypsoralen, 4,6,4’-trimethylangelicin, and chlorpromazine on cell death and TNF-alpha production Arch. Dermatol. Res. 2002 294 147–51

    Article  CAS  Google Scholar 

  13. F. A. Roberts G. J. Richardson S. M. Michalek Effects of Porphyromonas gingivalis and Escherichia coli on mononuclear phagocytes Infect. Immun. 1997 65 3248–3254

    Article  CAS  Google Scholar 

  14. C. Stratowa G. Löffler P. Lichter S. Stilgenbauer P. Haberl N. Schweifer H. Döhner K. K. Wilgenbus cDNA microarray gene expression analysis of B-cell chronic lymphocytic leukemia proposes potential new prognostic markers involved in lymphocyte trafficking Int. J. Cancer 2001 91 474–480

    Article  CAS  Google Scholar 

  15. P. Stordeur L. F. Poulin L. Craciun L. Zhou L. Schandene A. De Lavareille S. Gorierly M. Goldman Cytokine mRNA quantification by real-time PCR J. Immunol. Methods 2002 259 25–64

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolnicka-Glubisz, A., Sarna, T., Klosner, G. et al. UVA activated 8-MOP and chlorpromazine inhibit release of TNF-α by post-transcriptional regulation. Photochem Photobiol Sci 3, 334–336 (2004). https://doi.org/10.1039/b302621c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b302621c

Navigation