Skip to main content
Log in

Kinetic study of the oxidation of phenolic derivatives of α,α,α-trifluorotoluene by singlet molecular oxygen [O2(1Δg)] and hydrogen phosphate radicals

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The oxidation kinetics and mechanism of the phenolic derivatives of α,α,α-trifluorotoluene, 2-trifluoromethylphenol, 3-trifluoromethylphenol (3-TFMP), 4-trifluoromethylphenol and 3,5-bis(trifluoromethyl)phenol, mediated by singlet molecular oxygen, O2(1Δg), and hydrogen phosphate radicals were studied, employing time-resolved O2(1Δg) phosphorescence detection, polarographic determination of dissolved oxygen and flash photolysis. All the substrates are highly photo-oxidizable through a O2(1Δg)-mediated mechanism. The phenols show overall quenching constants for O2(1Δg) of the order of 106 M−1 s−1 in D2O, while the values for the phenoxide ions in water range from 1.2 × 108 to 3.6 × 108 M−1 s−1. The effects of the pH and polarity of the medium on the kinetics of the photo-oxidative process suggest a charge-transfer mechanism. 2-Trifluoromethyl-1,4-benzoquinone is suspected to be the main photo-oxidation product for the substrate 3-TFMP. The absolute rate constants for the reactions of HPO4•− with the substrates range from 4 × 108 to 1 × 109 M−1 s−1. The 3-trifluoromethylphenoxyl radical was observed as the organic intermediate formed after reaction of 3-TFMP with HPO4•−, yielding 2,2’-bis(fluorohydroxymethyl)biphenyl-4,4’-diol as the end product. The observed results indicate that singlet molecular oxygen and hydrogen phosphate radicals not only react at different rates with the phenols of α,α,α-trifluorotoluene, but the reactions also proceed through different reaction channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aquatic and Surface Photochemistry, ed. G. R. Helz, R. G. Zepp and D. G. Crosby, Lewis Publishers, London, 1994.

    Google Scholar 

  2. B. C. Faust, Photochemistry of clouds, fogs and aerosols Environ. Sci. Technol. 1994 28 217A–222A

    Google Scholar 

  3. O. Legrini, E. Oliveros and A. M. Braun, Photochemical processes for water treatment Chem. Rev. 1993 93 671–698.

    Article  CAS  Google Scholar 

  4. P. Neta, R. E. Huie and A. B. Ross, Rate constants for reactions of inorganic radicals in aqueous solution J. Phys. Chem. Ref. Data 1988 17 1027–1284.

    Article  CAS  Google Scholar 

  5. G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution J. Phys. Chem. Ref. Data 1988 17 513–816.

    Article  CAS  Google Scholar 

  6. N. A. García, Singlet molecular oxygen-mediated photodegradation of aquatic phenolic pollutants. A kinetic and mechanistic overview J. Photochem. Photobiol., B 1994 22 185–196.

    Article  Google Scholar 

  7. D. O. Mártire and M. C. Gonzalez, Quantitative structure-activity relationship (QSAR) for reactions of singlet molecular oxygen with phenols Recent Res. Devel. Photochem. Photobiol. 2000 4 271–280.

    Google Scholar 

  8. J. A. Rosso, P. E. Allegretti, D. O. Mártire and M. C. Gonzalez, Reactions of sulfate and phosphate radicals with α,α,α-trifluorotoluene J. Chem. Soc., Perkin Trans. 2 1999 205–210.

    Google Scholar 

  9. S. Criado, S. G. Bertolotti, A. T. Soltermann, N. A. García, Kinetics studies on the photosensitized oxidation (O2(1Δg)-mediated) of tryptophan-alkyl esters in Triton X-100 micellar solutions J. Photochem. Photobiol., B 1997 38 107–113.

    Article  CAS  Google Scholar 

  10. D. O. Mártire, C. Evans, S. G. Bertolotti, S. E. Braslavsky, N. A. García, Singlet molecular oxygen O2(a1Δg) production and quenching by hydroxybiphenyls Chemosphere 1993 26 1691–1701.

    Article  Google Scholar 

  11. J. A. Rosso, F. J. Rodríguez Nieto, M. C. Gonzalez, D. O. Mártire, Reactions of phosphate radicals with substituted benzenes J. Photochem. Photobiol., A 1998 116 21–25.

    Article  CAS  Google Scholar 

  12. M. L. Alegre, M. Geronés, J. A. Rosso, S. G. Bertolotti, A. M. Braun, D. O. Mártire and M. C. Gonzalez, Kinetic study of the reaction of chlorine atoms and Cl2- radicals anions in aqueous solutions. I. Reaction with benzene J. Phys. Chem. A 2000 104 3117–3125.

    Article  CAS  Google Scholar 

  13. M. Fujio, R. T. McIver Jr. and R. W. Taft, Effects on the acidities of phenols from specific substituent-solvent interactions. Inherent susbtituent parameters from gas-phase acidities J. Am. Chem. Soc. 1981 103 4017–4029.

    Article  CAS  Google Scholar 

  14. C. Li and M. Z. Hoffmann, Oxidation of phenol by singlet oxygen photosensitized by the tris(2,2′-bipyridine)ruthenium(II) ion J. Phys. Chem. A 2000 104 5998–6002.

    Article  CAS  Google Scholar 

  15. F. E. Scully Jr., J. Hoigné, Rate constants for reactions of singlet oxygen with phenols and other compounds in water Chemosphere 1987 16 681–694.

    Article  CAS  Google Scholar 

  16. F. Wilkinson, W. P. Helman and A. B. Ross, Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation J. Phys. Chem. Ref. Data 1995 24 663–1021.

    Article  CAS  Google Scholar 

  17. V. Sanz-Nebot, I. Valls, D. Barbero and J. Barbosa, Acid-base behavior of quinolones in aqueous acetonitrile mixtures Acta Chem. Scand. 1997 51 896–903.

    Article  CAS  Google Scholar 

  18. Handbook of Chemistry and Physics, ed. R C Weast, CRC Press, Inc. Boca Raton, FL, 60th edn., 1980.

    Google Scholar 

  19. J. March, Reactions, mechanisms, and structure, in Advanced Organic Chemistry, Wiley-Interscience, New York, 4th edn., 1991, pp. 280–285 and references therein; and

    Google Scholar 

  20. P. Segura, Simultaneous use of empirical and semiempirical substituent parameters as a new method of analysis of the ortho effect. Application in reactions via aryl anion intermediates J. Org. Chem. 1985 50 1045–1053.

    Article  CAS  Google Scholar 

  21. C. S. Foote and Y. T. Ching, Chemistry of Singlet Oxygen. XXI. Kinetics of Bilirubin Photooxygenation J. Am. Chem. Soc. 1975 97 6209–6214.

    Article  CAS  Google Scholar 

  22. A. B. Ross, W. G. Mallard, W. P. Helman, G. V. Buxton, R. E. Huie and P. Neta, NDRL-NIST Solution Kinetics Database, ver. 3.0, Notre Dame Radiation Laboratory, Notre Dame, IN, USA, and National Institute of Standards and Technology, Gaithersburg, MD, USA, 1998.

    Google Scholar 

  23. R Scurlock and P. R. Ogilby, Effect of solvent on the rate constant for the radiative deactivation of singlet molecular oxygen 1Δg O2J. Phys. Chem. 1987 91 4599–4602.

    Article  CAS  Google Scholar 

  24. F. Jensen and C. S. Foote, Chemistry of singlet oxygen. 48. Isolation and structure of the primary product of photooxygenation of 3,5-t-butyl catechol Photochem. Photobiol. 1987 46 325–330.

    Article  CAS  Google Scholar 

  25. D. O. Mártire, S. E. Braslavsky, N. A. García, Sensitized photooxidation of dihydroxybenzenes and chlorinated derivatives. A kinetic study J. Photochem. Photobiol., A 1991 61 113–124.

    Article  Google Scholar 

  26. E. A. Lissi, M. V. Encinas, E. Lemp and M. A. Rubio, Singlet oxygen [O2 (1Δg )] bimolecular processes. Solvent and compartmentalization effects Chem. Rev. 1993 93 699–723.

    Article  CAS  Google Scholar 

  27. D. O. Mártire and M. C. Gonzalez, Electron transfer reactions of singlet molecular oxygen with phenols J. Phys. Org. Chem. 2000 13 208–212.

    Article  Google Scholar 

  28. E. J. Lien, S. Ren, H-H Bui and R. Wang, Quantitative structure-activity relationship analysis of phenolic antioxidants Free Radical Biol. Med. 1999 26 285–294.

    Article  CAS  Google Scholar 

  29. J. A. Rosso, P. Caregnato, V. C. Mora, M. C. Gonzalez, D. O. Mártire, Reactions of phosphate radicals with monosubstituted benzenes. A mechanistic investigation. Helv. Chim. Acta 2003, in press.

    Google Scholar 

  30. E. J. Land and M. Ebert, Pulse radiolysis studies of aqueous phenol Trans. Faraday Soc. 1967 63 1181–1190.

    Article  CAS  Google Scholar 

  31. P. B. Draper, M. A. Fox, E. Pelizetti and N. Serpone, Pulse radiolysis of 2,4,5-trichlorophenol: formation, kinetics and properties of hydrotrichlorocyclohexadyene, trichlorophenoxyl, and dihydroxytrichlorociclohexadienyl radicals J. Phys. Chem. 1989 93 1938–1943.

    Article  CAS  Google Scholar 

  32. M. Jonsson, J. Lind, T. Reitberger, T. E. Eriksen and G. Merenyi, Free radical combination reactions involving phenoxyl radicals J. Phys. Chem. 1993 97 8229–8233.

    Article  CAS  Google Scholar 

  33. G. E. Adams, B. D. Michael and E. J. Land, Pulse radiolysis investigations of unimolecular elimination reactions in free radicals produced by OH addition to hydroxybenzenes Nature 1966 211 293–294.

    Article  CAS  Google Scholar 

  34. R. P. Hickerson, F. Prat, J. G. Muller, C. S. Foote and C. J. Burrows, Sequence and stacking dependence of 8-oxoguanine oxidation: comparison of one-electron vs. singlet oxygen mechanisms J. Am. Chem. Soc. 1999 121 9423–9428.

    Article  CAS  Google Scholar 

  35. S. P. Stratton and D. C. Liebler, Determination of singlet oxygen-specific versus radical-mediated lipid peroxidation in photosensitized oxidation of lipid bilayers: Effect of β-carotene and α-tocopherol Biochemistry 1997 36 12911–12920.

    Article  CAS  Google Scholar 

  36. S. Criado, J. M. Marioli, P. E. Allegretti, J. Furlong, D. O. Mártire, N. A. García, Oxidation of di- and tripeptides of tyrosine and valine mediated by singlet molecular oxygen, phosphate radicals and sulfate radicals J. Photochem. Photobiol., B 2001 65 74–84.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosso, J.A., Criado, S., Bertolotti, S.G. et al. Kinetic study of the oxidation of phenolic derivatives of α,α,α-trifluorotoluene by singlet molecular oxygen [O2(1Δg)] and hydrogen phosphate radicals. Photochem Photobiol Sci 2, 882–887 (2003). https://doi.org/10.1039/b302502k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b302502k

Navigation