Skip to main content
Log in

Photoelectrochemical properties of platinum(iv) chloride surface modified TiO2

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Anatase (TH), rutile (TiO2-R), and a mixture of anatase and rutile (P25) were surface modified by chemisorbed chloroplatinate(iv) complexes. All materials gave rise to anodic photocurrents when deposited on conducting glass and irradiated in the wavelength range of 330–650 nm. In the presence of formate “current-doubling” factors of 5–7 were measured. Flatband potentials were obtained by the suspension method through recording the photovoltage as function of the pH value. The value of -0.54 V as found for TH is shifted to -0.49, -0.45, and -0.28 V (vs. NHE, pH = 7) when the surface is covered by 1, 2, and 4 wt% of H2[PtCl6], respectively. The flatband potential shifts by 50 and 60 mV per pH unit for P25 and 4% H2[PtCl6]/TH, respectively, as found by a novel method based on the use of different pH-independent redox systems of the bipyridinium type. Whereas the rutile based material was inactive, the TH and P25 samples photocatalyzed the mineralization of 4-CP with visible light. Moreover, the capability of H2[PtCl6]/TH to mineralize also cyanuric acid, the end-product of atrazine decomposition in photocatalytic processes with unmodified TiO2, was observed upon UV and also visible light irradiation. From these experimental results an energy diagram is proposed to rationalize the reactions observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Tryk, A. Fujishima and K. Honda, Recent topics in photoelectrochemistry: achievements and future prospects, Electrochim. Acta, 2000, 45, 2363.

    Article  CAS  Google Scholar 

  2. H. Yamashita, Y. Ichihashi, M. Takeuchi, S. Kishiguchi and M. Anpo, Characterization of metal ion-implanted titanium oxide photocatalysts operating under visible light irradiation, J. Synchrotron Radiat., 1999, 6, 451–452.

    Article  CAS  PubMed  Google Scholar 

  3. H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, Y. Ichihashi, F. Goto, M. Ishida, T. Sasaki and M. Anpo, Application of ion beam techniques for preparation of metal ion-implanted TiO2 thin film photocatalyst available under visible light irradiation: Metal ion-implantation and ionized cluster beam method, J. Synchrotron Radiat., 2001, 8, 569–571.

    Article  CAS  PubMed  Google Scholar 

  4. H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue and M. Anpo, Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts, J. Photochem. Photobiol., A, 2002, 148, 257.

    Article  CAS  Google Scholar 

  5. S. Klosek and D. Raftery, Visible Light Driven V-Doped TiO2 Photocatalyst and Its Photooxidation of Ethanol, J. Phys. Chem. B, 2001, 105, 2815.

    Article  CAS  Google Scholar 

  6. H. Kisch, L. Zang, C. Lange, W. F. Maier, C. Antonius and D. Meissner, Modifiziertes, amorphes Titandioxid - ein Hybrid-Photohalbleiter zur Detoxifikation und Stromerzeugung mit sichtbarem Licht, Angew. Chem., 1998, 110, 3201.

    Article  Google Scholar 

  7. L. Zang, C. Lange, W. F. Maier, I. Abraham, S. Storck and H. Kisch, Amorphous microporous titania modified with platinum(IV) chloride - a new type of hybrid photocatalyst for visible light detoxification, J. Phys. Chem. B, 1998, 102, 10765.

    Article  CAS  Google Scholar 

  8. L. Zang, W. Macyk, C. Lange, W. F. Maier, C. Antonius, D. Meissner and H. Kisch, Visible Light Detoxification and Charge Generation by Transition Metal Chloride Modified Titania, Chem. Eur. J., 2000, 6, 379–384.

    Article  CAS  PubMed  Google Scholar 

  9. W. Macyk and H. Kisch, Photosensitization of Crystalline and Amorphous Titanium Dioxide by Platinum(IV) Chloride Surface Complexes, Chem. Eur. J., 2001, 7, 1862.

    Article  CAS  PubMed  Google Scholar 

  10. G. Burgeth and H. Kisch, Photocatalytic and photoelectrochemical properties of titania-chloroplatinate(IV), Coord. Chem. Rev., 2002, 230, 40.

    Article  Google Scholar 

  11. For the mechanism of the further reaction steps see, e.g. J. Cunningham and G. Al-Sayyed, Factors influencing efficiencies of titania-sensitised photodegradation. Part 1. Substituted benzoic acids: discrepancies with dark-adsorption parameters, J. Chem. Soc., Faraday Trans., 1990, 86

    Article  CAS  Google Scholar 

  12. J. Theurich, M. Lindner and D. W. Bahnemann, Photocatalytic degradation of 4-chlorophenol in aerated aqueous titanium dioxide suspensions: a kinetic and mechanistic study, Langmuir, 1996, 12, 6368–6376.

    Article  CAS  Google Scholar 

  13. R. Memming, Mechanism of the electrochemical reduction of persulfates and hydrogen peroxide, J. Electrochem. Soc., 1969, 116, 785.

    Article  CAS  Google Scholar 

  14. J. M. Bolts and M. S. Wrighton, Correlation of Photocurrent-Voltage Curves with Flat-Band Potential for Stable Photoelectrodes for the Photoelectrolysis of Water, J. Phys. Chem., 1976, 80, 2641–2645.

    Article  CAS  Google Scholar 

  15. G. Boschloo and D. Fitzmaurice, Spectroelectrochemical investigation of surface states in nanostructured TiO2 electrodes, J. Phys. Chem. B, 1999, 103, 2228–2231.

    Article  CAS  Google Scholar 

  16. B. Enright, G. Redmond and D. Fitzmaurice, Spectroscopic determination of flatband potentials for polycrystalline TiO2 electrodes in mixed solvent systems, J. Phys. Chem., 1994, 98, 6195–6200.

    Article  CAS  Google Scholar 

  17. G. Rothenberger, D. Fitzmaurice and M. Grätzel, Spectroscopy of conduction band electrons in transparent metal oxide semiconductor films: optical determination of the flatband potential of colloidal titanium dioxide films, J. Phys. Chem., 1992, 96, 5983–5986.

    Article  CAS  Google Scholar 

  18. B. O’Regan, M. Grätzel and D. Fitzmaurice, Optical electrochemistry I: steady state spectroscopy of conduction-band electrons in a metal oxide semiconductor electrode, Chem. Phys. Lett., 1991, 183, 89–93.

    Article  Google Scholar 

  19. B. O’Regan, M. Grätzel and D. Fitzmaurice, Optical electrochemistry. 2. Real-time spectroscopy of conduction band electrons in a metal oxide semiconductor electrode, J. Phys. Chem., 1991, 95, 10525–10528.

    Article  Google Scholar 

  20. G. Redmond and D. Fitzmaurice, Spectroscopic determination of flatband potentials for polycrystalline TiO2 electrodes in nonaqueous solvents, J. Phys. Chem., 1993, 97, 1426–1430.

    Article  CAS  Google Scholar 

  21. S. F. Pond, Electroreflectance from flatband, Surf. Sci., 1973, 37, 596–616.

    Article  CAS  Google Scholar 

  22. M. Cardona, K. L. Shaklee and F. H. Pollak, Electroreflectance at semiconductor-electrolyte interface, Phys. Rev., 1967, 154, 696–720.

    Article  CAS  Google Scholar 

  23. G. K. Boschloo, A. Goossens and J. Schoonman, Photoelectrochemical study of thin anatase TiO2 films prepared by metallorganic chemical vapor deposition, J. Electrochem. Soc., 1997, 144, 1311–1317.

    Article  CAS  Google Scholar 

  24. A. M. Chaparro, Frequency dependent electrolyte electroreflectance at semiconductor / electrolyte interfaces, J. Electroanal. Chem., 1999, 462, 251–258.

    Article  CAS  Google Scholar 

  25. P. Lemasson, C. Hinnen, N. R. de Tacconi and C. N. Van Huong, A capacitance and electrolyte electroreflectance study of the ZnSe/electrolyte interface, J. Electrochem. Soc., 1985, 132, 2405–2413.

    Article  CAS  Google Scholar 

  26. S. K. Poznyak, V. I. Pergushov, A. I. Kokorin, A. I. Kulak and C. W. Schläpfer, Structure and electrochemical properties of species formed as a result of Cu(II) ion adsorption onto TiO2 nanoparticles, J. Phys. Chem. B, 1999, 103, 1308–1315.

    Article  CAS  Google Scholar 

  27. K. Vos and H. J. Krusemeyer, Reflectance and electroreflectance of TiO2 single crystals: I. Optical spectra, J. Phys. C: Solid State Phys., 1977, 10, 3893–3915.

    Article  CAS  Google Scholar 

  28. W. Siripala and M. Tomkiewicz, Observation of “intrinsic” surface states at the TiO2-aqueous-electrolyte interface by sub-band-gap electroreflectance spectroscopy, Phys. Rev. Lett., 1983, 50, 443–446.

    Article  CAS  Google Scholar 

  29. M. F. Finlayson, B. L. Wheeler, N. Kakuta, K.-H. Park, A. J. Bard, A. Campion, M. A. Fox, S. E. Webber and J. M. White, Determination of flat-band position of CdS crystals, films, and powders by photocurrent and impedance techniques. Photoredox reaction mediated by intragap states, J. Phys. Chem., 1985, 89, 5676–5681.

    Article  CAS  Google Scholar 

  30. M. D. Ward, J. R. White and A. J. Bard, Electrochemical investigation of the energetics of particulate titanium dioxide photocatalysts. The methyl viologen-acetate system, J. Am. Chem. Soc., 1983, 105, 27–31.

    Article  CAS  Google Scholar 

  31. J. R. White and A. J. Bard, Electrochemical investigation of photocatalysis at CdS suspensions in the presence of methylviologen, J. Phys. Chem., 1985, 89, 1947–1954.

    Article  CAS  Google Scholar 

  32. A. M. Roy, G. C. De, N. Sasmal and S. S. Bhattacharyya, Determination of the flatband potential of semiconductor particles in suspension by photovoltage measurement, Int. J. Hydrogen Energy, 1995, 20, 627–630.

    Article  CAS  Google Scholar 

  33. B. Götz, F. Knoch and H. Kisch, Bis(maleonitriledithiolato)oxomolybdate(IV)-Bipyridinium Ion Pairs, Chem. Ber., 1996, 129, 33–37.

    Article  Google Scholar 

  34. H. Kisch, B. Eisen, R. Dinnebier, K. Shankland, W. I. F. David and F. Knoch, Chiral Metal-Dithiolene/Viologen Ion Pairs: Synthesis and Electrical Conductivity, Chem. Eur. J., 2001, 7, 738–748.

    Article  CAS  PubMed  Google Scholar 

  35. S. Hünig, J. Gross, E. F. Lier and H. Quast, Two-step redox systems. XII. Synthesis and polarography of quarternary salts of phenanthrolines, 2,7-diazapyrene, and diazoniapentaphenes, Liebigs Ann. Chem., 1973, 339.

    Google Scholar 

  36. R. F. Homer and T. E. Tomlinson, Stereochemistry of the bridged quaternary salts of 2,2’-bipyridyl, J. Chem. Soc., 1960, 2498.

    Google Scholar 

  37. R. Cantu, O. Evans, F. K. Kawahara, J. A. Shoemaker and A. P. Dufour, An HPLC method with UV detection, pH control, and reductive ascorbic acid for cyanuric acid analysis in water, Anal. Chem., 2000, 72, 5820.

    Article  CAS  PubMed  Google Scholar 

  38. G. Kortum, Reflectance Spectroscopy, Springer, New York, 1969.

    Book  Google Scholar 

  39. R. M. Edreva-Kardjieva, Diffuse Reflectance Spectroscopy - a Useful Tool in Heterogeneous Catalysis, Bulg. Chem. Commun., 1992, 25, 166–192.

    CAS  Google Scholar 

  40. B. M. Weckhuysen and R. A. Schoonheydt, Recent progress in diffuse reflectance spectroscopy of supported metal oxide catalysts, Catal. Today, 1999, 49, 441–451.

    Article  CAS  Google Scholar 

  41. L. E. Cox and D. G. Peters, Electronic and vibrational spectra for trans-dihydroxotetrachloroplatinate(IV), Inorg. Chem., 1970, 9, 1927–1930.

    Article  CAS  Google Scholar 

  42. L. E. Cox, D. G. Peters and E. L. Wehry, Photoaquation of hexachloroplatinate(IV), J. Inorg. Nucl. Chem., 1972, 34, 297–305.

    Article  CAS  Google Scholar 

  43. J. Tauc, R. Grigorovici and A. Vancu, Optical properties and electronic structure of amorphous germanium, Phys. Status Solidi, 1966, 15, 627.

    Article  CAS  Google Scholar 

  44. L. Kavan, M. Graetzel, S. E. Gilbert, C. Klemenz and H. J. Scheel, Electrochemical and Photoelectrochemical Investigation of Single-Crystal Anatase, J. Am. Chem. Soc., 1996, 118, 6716.

    Article  CAS  Google Scholar 

  45. A. Wahl, M. Ulmann, A. Carroy and J. Augustynski, Highly selective photo-oxidation reactions at nanocrystalline TiO2 film electrodes, J. Chem. Soc., Chem. Commun., 1994, 2277–2278.

    Google Scholar 

  46. A. Wahl and J. Augustynski, Charge carrier transport in nanostructured anatase TiO2 films assisted by the self-doping of nanoparticles, J. Phys. Chem. B, 1998, 102, 7820–7828.

    Article  CAS  Google Scholar 

  47. S. E. Livingstone, Complexes of Platinum(V) in Comprehensive Inorganic Chemistry, vol. 3, 1973, pp. 1370.

    Google Scholar 

  48. R. Usón, J. Forniés, M. Tomás, B. Menjón, K. Sünkel and R. Bau, The first mononuclear Pt(III) complex. Molecular structures of (NBu4)[Pt(III)(C6Cl5)4] and of its parent compound (NBu4)2[Pt(II)(C6Cl5)4]*2CH2Cl2, J. Chem. Soc., Chem. Commun., 1984, 751–752.

    Google Scholar 

  49. R. C. Wright and G. S. Laurence, Production of platinum(III) by flash photolysis of [PtCl6]2-, J. Chem. Soc., Chem. Commun., 1972, 132–133.

    Google Scholar 

  50. D. Rehorek, C. M. Dubose and E. G. Janzen, Spin trapping of chlorine atoms produced by photolysis of hexachloroplatinate(IV) in solution, Inorg. Chim. Acta, 1984, 83, L7–L8.

    Article  CAS  Google Scholar 

  51. W. L. Waltz, J. Lilie, A. Goursot and H. Chermette, Photolytic and radiolytic study of platinum(III) complex ions containing aquo and chloro ligands, Inorg. Chem., 1989, 28, 2247–2256.

    Article  CAS  Google Scholar 

  52. R. B. Draper and M. A. Fox, Titanium dioxide photosensitized reactions studied by diffuse reflectance flash photolysis in aqueous suspensions of TiO2 powder, Langmuir, 1990, 6, 1396–1402.

    Article  CAS  Google Scholar 

  53. S. D. Malone and J. F. Endicott, Photochemical behavior of cobalt complexes containing macrocyclic (N4) ligands. Oxidation-reduction chemistry of dihalogen radical anions, J. Phys. Chem., 1972, 76, 2223.

    Article  CAS  Google Scholar 

  54. CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, New York, London, Tokyo, 1995.

  55. J. Theurich, M. Lindner and D. W. Bahnemann, Photocatalytic degradation of 4-chlorophenol in aerated aqueous titanium dioxide suspensions: a kinetic and mechanistic study, Langmuir, 1996, 12, 6368–6376.

    Article  CAS  Google Scholar 

  56. A. F. Holleman and E. Wiberg, Lehrbuch der Anorganischen Chemie, Walter de Gruyter, Berlin, New York, 1976.

    Book  Google Scholar 

  57. R. C. Johnson, F. Basolo and R. G. Pearson, Base hydrolysis of some chloroammineplatinum(IV) complexes, J. Inorg. Nucl. Chem., 1962, 24, 59–71.

    Article  CAS  Google Scholar 

  58. D. T. Sawyer and J. S. Valentine, How super is superoxide?, Acc. Chem. Res., 1981, 14, 393–400.

    Article  CAS  Google Scholar 

  59. T. A. Tetzlaff and W. S. Jenks, Stability of Cyanuric Acid to Photocatalytic Degradation, Org. Lett., 1999, 1, 463.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horst Kisch.

Additional information

Dedicated to Professor Jean Kossanyi on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macyk, W., Burgeth, G. & Kisch, H. Photoelectrochemical properties of platinum(iv) chloride surface modified TiO2. Photochem Photobiol Sci 2, 322–328 (2003). https://doi.org/10.1039/b211583b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b211583b

Navigation