Skip to main content
Log in

Excited state absorption of fullerenes measured by the photoacoustic calorimetry technique

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photoacoustic calorimetry (PAC) is used to determine the excited state absorption cross sections in a molecular system showing reverse saturable absorption behavior. PAC experiments on fullerene and fulleropyrrolidine in toluene solutions are performed at 532 nm and 690 nm, with a ns laser source. The PAC signal amplitude displays a superlinear increase when the energy of the applied laser source is increased. This behavior is ascribed to a process of enhanced absorption due to molecules populating the excited electronic states. The PAC signal observed for these chromophores is simulated numerically. The simulations rely on a description of the absorbing molecule as a six-level system, whose molecular parameters (i.e. absorption cross sections and lifetimes) are the ones for a reverse saturable absorber. The time-dependent population in the different energy levels is described through a rate equation system. This kind of model has been widely used by us to reproduce other experimental data such as nonlinear transmittance and Z-scan data. The PAC signal amplitude is the sum of the different contributions to non-radiative relaxation which arise from molecules populating different energy levels. The absorption cross sections for the singlet and triplet excited states of fullerene and fulleropyrrolidine are derived from the simulated PAC signal amplitudes. The values obtained are in good agreement with literature data measured with different techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.W. Tutt, A. Kost, Optical limiting performance of C60 and C70 solutions, Nature, 1992, 356, 225.

    Article  CAS  Google Scholar 

  2. F. Henari, J. Callaghan, H. Stiel, W. Lau, D. J. Cardin, Intensity-dependent absorption and resonant optical nonlinearity of C60 and C70 solutions, Chem. Phys. Lett., 1992, 199, 144.

    Article  CAS  Google Scholar 

  3. M. P. Joshi, S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, Investigation of optical limiting in C60 solutions, Appl. Phys. Lett., 1993, 62, 1763.

    Article  CAS  Google Scholar 

  4. Y. P. Sun, J. E. Riggs, Organic and inorganic optical limiting materials. From fullerenes to nanoparticles, Int. Rev. Phys. Chem., 1999, 18, 43.

    Article  CAS  Google Scholar 

  5. R. L. Sutherland, Handbook of Nonlinear Optics, Marcel Dekker Inc., New York, 1996.

    Google Scholar 

  6. Y. R. Shen, The Principles of Nonlinear Optics, J. Wiley and Sons, New York, 1984.

    Google Scholar 

  7. M. Sheik-Bahae, A. A. Said, E. W. van Stryland, Sensitive measurement of optical nonlinearities using a single beam, IEEE J. Quantum Electron., 1990, 26, 760.

    Article  CAS  Google Scholar 

  8. J. W. Arbogast, A. P. Darmanyan, C. S. Foote, Y. Rubin, F. N. Diederich, M. M. Alvarez, S. J. An, R. L. Whetten, Photophysical properties of sixty atom carbon molecules (C60), J. Phys. Chem., 1991, 95, 11.

    Article  CAS  Google Scholar 

  9. D. A. Samuels, R. B. Weisman, A new photometric method for directly determining molar absorptivity-quantum yield products of excited states: application to triplet C60, Chem. Phys. Lett, 1998, 295, 105.

    Article  CAS  Google Scholar 

  10. T. W. Ebbesen, K. Tanigaki, S. Kuroshima, Excited-state properties of C60, Chem. Phys. Lett., 1991, 181, 501.

    Article  CAS  Google Scholar 

  11. M. Maggini, G. Scorrano, M. Prato, G. Brusatin, P. Innocenzi, M. Guglielmi, A. Renier, R. Signorini, M. Meneghetti, R. Bozio, C60 derivatives embedded in sol-gel materials, Adv. Mater., 1995, 7, 404.

    Article  CAS  Google Scholar 

  12. L. J. Rothberg, J. D. Simon, M. Bernstein, K. S. Peters, Pulsed laser photoacoustic calorimetry of metastable species applied to photoinduced processes in solution, J. Am. Chem. Soc., 1983, 105, 3464.

    Article  CAS  Google Scholar 

  13. S. E. Braslavsky, G. E. Heibel, Time resolved photothermal and photoacoustic methods applied to photoinduced processes in solution, Chem Rev., 1992, 92, 1381.

    Article  CAS  Google Scholar 

  14. R. R. Hunt, J. J. Grabowski, A precise determination of the triplet energy of carbon (C60) by photoacoustic calormetry, J. Phys. Chem., 1991, 95, 6073.

    Article  Google Scholar 

  15. M. Terazima, N. Hirota, H. Shinohara, Y. Saito, Photothermal investgation of the triplet state of carbon molecule (C60), J. Phys. Chem., 1991, 95, 9080.

    Article  CAS  Google Scholar 

  16. R. C. Issac, C. V. Bindhu, S. S. Harilal, J. K. Varier, V. P. N. Nampoori, C. P. G. Vallabhan, A study of photoacoustic effects and optical limiting in the solution of C60 in toluene, Mod. Phys. Lett. B, 1996, 10, 61.

    Article  CAS  Google Scholar 

  17. G. M. Bilmes, J. O. Tocho, S. E. Braslavsky, Laser induced optoacoustic studies of the photoisomerization of the laser dye 3–3’–Diethyloxaducarbocyanine Iodide (DODCI), Chem. Phys. Lett., 1987, 134, 335.

    Article  CAS  Google Scholar 

  18. G. M. Bilmes, J. O. Tocho, S. E. Braslavsky, Spectrum, energy content and fluorescence quantum yield of the photoisomer of the laser dye 3–3’–Diethyloxaducarbocyanine Iodide (DODCI). Laser induced optoacoustic studies, J. Phys. Chem., 1988, 92, 5958.

    Article  CAS  Google Scholar 

  19. G. M. Bilmes, J. O. Tocho, S. E. Braslavsky, Photophysical processes of polymethine dyes. An absorption, emission and optoacoustic study on 3–3’Diethylthiadicarbocyanine Iodide (DTDCI), J. Phys. Chem., 1989, 93, 6696.

    Article  CAS  Google Scholar 

  20. S. E. Bialkowski, and A. Chartier, Methods for modeling and diagnosis of nonlinear absorption in photothermal and photoacoustic spectrometry of homogeneous fluids, Photoacoustic and Photothermal Phenomena: 10th International Conference, ed. F. Scuderiand M. Bertolotti, American Institute of Physics, College Park, MD, 1999, AIP Conference Proceedings vol. 463, p. 46.

    Article  Google Scholar 

  21. A. Chartier, S. E. Bialkowski, Accurate measurements of organic dye solutions by use of pulsed laser photothermal deflection spectroscopy, Anal. Chem., 1995, 67, 2672.

    Article  CAS  Google Scholar 

  22. M. Maggini, G. Scorrano, M. Prato, Addition of azomethine ylides to C60: synthesis, characterization, functionalization of fullerene pyrrolidines, J. Am. Chem. Soc., 1993, 155, 9798.

    Article  Google Scholar 

  23. R. Signorini, M. Meneghetti, R. Bozio, M. Maggini, G. Scorrano, M. Prato, G. Brusatin, P. Innocenzi, M. Guglielmi, Optical limting and nonlinear optical properties of fullerene derivatives embedded in hybrid sol-gel glasses, Carbon, 2000, 38, 1653.

    Article  CAS  Google Scholar 

  24. C. Ferrante, A. Feis, R. Signorini, R. Bozio, F. Della Negra, Photoacoustic studies of nonlinear absorption in fullerenes, Nonlinear Opt., 2001, 27, 309.

    CAS  Google Scholar 

  25. E. P. Ippen, C. W. Shank, R. L. Woerner, Picosecond dynamics of azulene, Chem. Phys. Lett., 1977, 46, 20.

    Article  CAS  Google Scholar 

  26. A. J. Wurzer, T. Wilhelm, J. Piel, E. Riedle, Comprehensive measurements of the S1 azulene relaxation dyanmics and observation of vibrational wavepacket motion, Chem. Phys. Lett., 1999, 299, 296.

    Article  CAS  Google Scholar 

  27. M. R. Fraelich, R. B. Weisman, Triplet states of fullerene C60 and C70 in solution: long intrinsic lifetimes and energy pooling, J. Phys. Chem., 1993, 97, 11145.

    Article  CAS  Google Scholar 

  28. J. L. Anderson, Y. Z. An, Y. Rubin, C. S. Foote, Photophysical characterization and singlet oxygen yield of dihydrofullerens, J. Am. Chem. Soc., 1994, 116, 9763.

    Article  CAS  Google Scholar 

  29. R. M. Williams, J. W. Zwier, J. W. Verhoeven, Photoinduced intramolecular electron transfer in a bridged C60 (Acceptor)–Aniline (Donor) system; photophysical properites of the first “active” fullerene diads, J. Am. Chem. Soc., 1995, 117, 4093.

    Article  CAS  Google Scholar 

  30. J. Catalan, E. J. Elguero, Fluorescence of fullerenes (C60 and C70), J. Am. Chem. Soc., 1993, 115, 9249.

    Article  CAS  Google Scholar 

  31. K. C. Thomas, V. B. Biju, M. V. George, D. M. Guldi, P. D. Kamat, Excited-state interactions in pyrrolidinofullerenes, J. Phys. Chem. A, 1998, 102, 5341.

    Article  CAS  Google Scholar 

  32. C. Lambert, R. W. Redmond, Triplet energy level of β-carotene, Chem. Phys. Lett., 1994, 228, 495.

    Article  CAS  Google Scholar 

  33. R. Signorini, S. Sartori, M. Meneghetti, R. Bozio, M. Maggini, G. Scorrano, M. Prato, G. Brusatin, M. Guglielmi, Hybrid sol-gel glasses containing fullerene derivatives for bottleneck optical limting with multilayer structures, Nonlinear Opt., 1999, 21, 143.

    CAS  Google Scholar 

  34. R. Signorini, A. Tonellato, M. Meneghetti, R. Bozio, M. Maggini, G. Scorrano, M. Prato, G. Brusatin, P. Innocenzi, M. Guglielmi, Optical limiting properties of fullerene derivatives in hybrid sol-gel glasses, Nonlinear Opt., 2001, 27, 193.

    CAS  Google Scholar 

  35. R. V. Bensasson, T. Hill, C. Lambert, E. J. Laud, S. Leach, T. G. Truscott, Pulse radiolysis study of buckminsterfullerene in benzene solution. Assignment of the C60 triplet-triplet absorption spectrum, Chem. Phys. Lett., 1993, 201, 326.

    Article  CAS  Google Scholar 

  36. J. R. Rudzki, J. L. Goodman, K. S. Peters, Simultaneous determination of photoreaction dynamics and energetics using pulsed, time-resolved photoacoustic calorimetry, J. Am. Chem. Soc., 1985, 107, 7849.

    Article  CAS  Google Scholar 

  37. M. L. Horng, G.A. Gardecki, A. Papazyan, M. Maroncelli, Subpicosecond measurements of polar solvation dynamics: Coumarin 153 revisited, J. Phys. Chem., 1995, 99, 17311.

    Article  CAS  Google Scholar 

  38. Q. Zhong, Z. Wang, Y. Sun, Q. Zhu, F. Kong, Vibrational relaxation of dye molecules in solution studied by femtosecond time-resolved emission pumping fluorescence depletion, Chem. Phys. Lett, 1996, 248, 277.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ferrante.

Additional information

Dedicated to Professor Silvia Braslavsky, to mark her great contribution to photochemistry and photobiology particularly in the field of photothermal methods.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrante, C., Signorini, R., Feis, A. et al. Excited state absorption of fullerenes measured by the photoacoustic calorimetry technique. Photochem Photobiol Sci 2, 801–807 (2003). https://doi.org/10.1039/b211543c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b211543c

Navigation