Skip to main content
Log in

Photochromic compounds as optical limiters in the nanosecond time range: the example of mercury dithizonate complex

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Although being an efficient photochromic compound which absorbs in the blue in its stable form and in the orange in its photoactivated form, the mercury dithizonate complex is shown to be a poor optical limiter for nanosecond laser pulses at the wavelengths where both isomers absorb. Optical limiting effect, which is a consequence of reverse saturable absorption due to the photoactivated form, is demonstrated to be weak because of the back photobleaching of this form, which is important all the more as the laser intensity is high. Numerical integration of the spatio-temporal evolution of the laser beam intensity across the solution helps the understanding of the respective roles of the laser fluence and pulse duration. Finally, we draw the conclusion that photochromic compounds can only be used as optical limiters if the time constant for the back photochemical reaction is slow compared to the pulse duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For a general review on Photochromism, see Organic Photochromic and Thermochromic Compounds, vol. 1 and 2, ed. J. C. Crano and R. J. Guglielmetti, Plenum Press, New York, 1999.

    Google Scholar 

  2. C. B. McArdle, in Applied Photochromic Polymer Systems, ed. C.B. McArdle, Blackie, Glasgow, 1992, p. 1.

  3. S. Maeda, in ref., p. 85.

  4. N. Y. C. Chu, in Photochromism, Molecules and Systems, ed. H. Dürr and H. Bouas-Laurent, Elsevier, Amsterdam, 1990, p. 493.

  5. B. Van Gemert, in ref.1, p. 111.

  6. R. C. Bertelson, in Techniques of Chemistry, Vol. III: Photochromism, ed. G. H. Brown, Wiley-Interscience, New York, 1971, p. 45.

  7. S. Schneider, A. Mindl, G. Elfinger and M Melzig, Photochromism of spirooxazines. I. Investigation of the primary processes in the ring opening reaction by picosecond time-resolved absorption and emission spectroscopy, Ber. Bunzenges Phys. Chem., 1987, 91, 1222–1224.

    Article  CAS  Google Scholar 

  8. S. Aramaki, G. H. Atkinson, Spirooxazine photochromism: picosecond time resolved Raman and absorption spectroscopy, Chem. Phys. Lett., 1990, 170, 181–186.

    Article  CAS  Google Scholar 

  9. Jean Aubard, in ref.1, p. 357.

  10. J. W. Perry, in Nonlinear Optics of Organic Molecules and Polymers, ed. H. S. Nalwa and S. Miyata, CRC Press, Boca Raton, 1997, p. 813.

  11. J. W. Perry, K. Mansour, S. R. Marder, K. J. Perry, D. Alvarez and I Choong, Enhanced reverse saturable absorption and optical limiting in heavy-atom-substituted phtalocyanines, Opt. Lett., 1994, 19, 625–628.

    Article  CAS  Google Scholar 

  12. L. S. Meriwether, E. C. Breitner and C. L. Sloan, The photochromism of metal dithizonates, J. Am. Chem. Soc., 1965, 87, 4441–4448.

    Article  CAS  Google Scholar 

  13. L. S. Meriwether, E. C. Breitner and N. B. Colthup,Kinetic, Infrared Study of photochromism of metal dithizonates, J. Am. Chem. Soc., 1965, 87, 4448–4454.

    Article  CAS  Google Scholar 

  14. J. L. A. Webb, I. S. Bhatia, A. H. Corwin and A. G. Sharp, Reactions with heavy metals and their bearing on poisoning and antidote action, J. Am. Chem. Soc., 1950, 72, 91–95.

    Article  CAS  Google Scholar 

  15. L. François, M. Mostafavi, J. Belloni, J. F. Delouis, J. A. Delaire and P. Feneyrou, Optical limitation induced by gold clusters 1. Size effect, J. Phys. Chem. B, 2000, 104, 6133–6139.

    Article  Google Scholar 

  16. I. Texier, J. A. Delaire and C. Giannotti, Reactivity of the charge transfer excited state of sodium decatungstate at the nanosecond time scale, Phys. Chem. Chem. Phys., 2000, 2, 1205–1212.

    Article  CAS  Google Scholar 

  17. M. Sumitani and K. Yoshihara, Direct observation of the rate for cis → trans and trans → cis photoisomerization of stilbene with picosecond laser photolysis, Bull. Chem. Soc. Japan, 1982, 55, 85–89.

    Article  CAS  Google Scholar 

  18. V. Dentan, P. Feneyrou, F. Soyer, M. Vergnolle and P. Le Barny, Ph Robin, Broadband optical limiting and CCD sensor protection from nanosecond-pulsed laser threat with reverse saturable absorbers, Mater. Res. Soc. Symp. Proc., 1997, 479, 261–267.

    Article  CAS  Google Scholar 

  19. H. Irving, G. Andrew and E. J. Risdon, studies with Dithizone. Part I The determination of, traces of mercury, J. Chem. Soc., 1949, 541–547.

    Google Scholar 

  20. J. F. Reith and K. W. Gerritsma, Photometric determination of micro quantities of mercury as mercuric dithizonate, Rec. Trav. Chim. Pays-Bas, 1945, 64, 41–46.

    Article  CAS  Google Scholar 

  21. C. Goesling, A. W. Adamson and A. R. Gutierrez, Photochemical and kinetic studies of some metal dithizonate complexes, Inorg. Chim. Acta, 1978, 29, 279–287.

    Article  Google Scholar 

  22. A. T. Hutton and H. M. N. H. Irving, Photochromism in Organomercury(II) dithizonates, J. Chem. Soc., Dalton Trans., 1982, 2299–2301.

    Google Scholar 

  23. R. Mitzner, G. Gottlöber, M. Herlt and E. Selke, Zum Mechanismus der Photochromie des Quecksilberdithizonats, Z. Phys. Chem. Leipzig, 1981, 262, 65–75.

    Article  CAS  Google Scholar 

  24. N. Sertova, I. Petkov and J. M. Nunzi, Photochromism of mercury(II) dithizonate in solution, J. Photochem. Photobiol. A, 2000, 134, 163–168.

    Article  CAS  Google Scholar 

  25. B. Paci, J. M. Nunzi, N. Sertova and I. Petkov, Picosecond anisotropy of the transient absorption of the photochromic mercury dithizone complex in solution, J. Photochem. Photobiol. A, 2000, 137, 141–144.

    Article  CAS  Google Scholar 

  26. S. R. Varma and H. A. Mottola, Photochromism of silver(I) and mercury(II) dithizonates, Anal. Chim. Acta, 1986, 181, 245–251.

    Article  CAS  Google Scholar 

  27. S. Schneider, Investigation of the photochromic effect of spiro[indolino-naphtoxazine] derivatives by time resolved spectroscopy, Z. Phys. Chem., 1987, 154, 91–119.

    Article  CAS  Google Scholar 

  28. H. Miyasaka, S. Arai, A. Tabata, T. Nobuto, N. Mataga and M. Irie, Picosecond laser photolysis studies on photochromic reactions of 1,2-bis-(2,4,5-trimethyl-3-thienyl)maleic anhydride in solutions, Chem. Phys. Lett., 1994, 230, 249–254.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

† This paper is dedicated to Professor Jean Kossanyi on the event of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feneyrou, P., Soyer, F., Le Barny, P. et al. Photochromic compounds as optical limiters in the nanosecond time range: the example of mercury dithizonate complex. Photochem Photobiol Sci 2, 195–202 (2003). https://doi.org/10.1039/b210944c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b210944c

Navigation