Skip to main content
Log in

Polyoxometalate sensitization in mechanistic studies of photochemical reactions: The decatungstate anion as a reference sensitizer for photoinduced free radical oxygenations of organic compounds

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photosensitized oxygenation of organic molecules plays a key role in numerous processes of biological and industrial significance, such as, for example, photodynamic action and photodegradation of polymers. These reactions proceed either via quenching by the substrate of photophysically generated singlet oxygen, O2(1Δg), or via addition of ground state oxygen to photochemically generated radicals derived from the substrate, or via both pathways. The evaluation of the contributions of both mechanisms to the overall process requires reference sensitizers that exclusively induce one of the corresponding reactions. Some compounds are known to produce singlet oxygen with unit efficiency, but no references to sensitizers producing free radicals but no singlet oxygen have been found so far. In this work, we propose to use the decatungstate anion, W10O324-, as a first reference sensitizer for free radical oxygenations of organic molecules. A combination of time-resolved and steady-state studies has been performed to compare the photo-oxygenation of simple reference compounds, including 2-methyl-2-pentene and 2,3-dimethylbutene, by W10O324- and by classical O2(1Δg) sensitizers, such as methylene blue and ruthenium complexes. It is demonstrated that W10O324- sensitized oxygenation of organic compounds occurs exclusively by a free radical pathway, which differs clearly from both Type I and Type II oxygenations. Comparison with Type II reactions shows that: (i) in spite of their weaker reactivity, singlet oxygen mediated reactions are associated with larger photo-oxygenation yields than W10O324- induced processes, due to the longer lifetime of the reactive species; and (ii) reaction of alkenes with both singlet oxygen and decatungstate features charge transfer interactions, whose magnitude is larger in the case of O2(1Δg).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. O. Schenck, Photosensitization, Ind. Eng. Chem., 1963, 55, 40–43.

    Article  CAS  Google Scholar 

  2. G. O. Schenck and E. Koch, Zwischenreaktionen bei photosensibilisierten Prozessen in Lösungen, Z. Elektrochem., 1960, 64, 170–177.

    CAS  Google Scholar 

  3. K. Gollnick, Type II photooxygenation reactions in solution, Adv. Photochem., 1968, 6, 1–122.

    CAS  Google Scholar 

  4. C. S. Foote, Mechanisms of photosensitized oxidation, Science, 1968, 162, 963–970.

    Article  CAS  PubMed  Google Scholar 

  5. C. S. Foote, Photosensitized oxidation and singlet oxygen: Consequences in biological systems, in Free Radicals in Biology 2, ed. W. A. Pryor, Academic Press, New York, 1976, pp. 85–133.

    Chapter  Google Scholar 

  6. C. S. Foote, Type I and Type II mechanisms in photodynamic action. In light-activated pesticides, in ACS Symposium Ser. 339, ed. J. R. Heitz and K. R. Downum, American Chemical Society, 1987, Washington D.C., pp. 22–38.

    Google Scholar 

  7. C. S. Foote, Chemical mechanisms of photodynamic action, in Future Directions and Applications in Photodynamic Therapy, Spie Institute Series, Optical Engineering Press, Bellingham, WA, 1990, vol. IS6, pp. 115–126.

    Google Scholar 

  8. C. Tanielian, Photooxygénations sensibilisées par les colorants, Biochimie, 1986, 68, 797–806.

    Article  CAS  PubMed  Google Scholar 

  9. C. Tanielian, R. Mechin, R. Seghrouchni and C. Schweitzer, Mechanistic and kinetic aspects of photosensitization in the presence of oxygen, Photochem. Photobiol., 2000, 71, 12–19.

    Article  CAS  PubMed  Google Scholar 

  10. R. Schmidt, C. Tanielian, R. Dunsbach and C. Wolff, Phenalenone, a universal reference compound for the determination of quantum yields of singlet oxygen O2(1Δg) sensitization, J. Photochem. Photobiol., A, 1994, 79, 11–17.

    Article  CAS  Google Scholar 

  11. C. Tanielian, Decatungstate photocatalysis, Coord. Chem. Rev., 1998, 180, 1165–1181.

    Article  Google Scholar 

  12. D. C. Duncan, T. L. Netzel and C. L. Hill, Early-time dynamics and reactivity of polyoxometalate excited states. Identification of a short-lived LMCT excited state and a reactive long-lived charge-transfer intermediate following picosecond flash excitation of W10O324- in acetonitrile, Inorg. Chem., 1995, 34, 4640–4646.

    Article  CAS  Google Scholar 

  13. I. Texier, J. F. Delouis, J. A. Delaire, C. Giannotti, P. Plaza and M. M. Martin, Dynamics of the first excited state of the decatungstate anion studied by subpicosecond laser spectroscopy, Chem. Phys. Lett., 1999, 311, 139–145.

    Article  CAS  Google Scholar 

  14. L. P. Ermolenko, C. Giannotti and J. A. Delaire, Laser flash photolysis study of the mechanism of photooxidation of alkanes catalyzed by decatungstate anion, J. Chem. Soc., Perkin Trans. 2, 1997, 25–30.

    Google Scholar 

  15. C. Tanielian, K. Duffy and A. Jones, Kinetic and mechanistic aspects of photocatalysis by polyoxotungstates: a laser flash photolysis, pulse radiolysis, and continuous photolysis study, J. Phys. Chem. B, 1997, 101, 4276–4282.

    Article  CAS  Google Scholar 

  16. D. C. Duncan and M. A. Fox, Early events in decatungstate photocatalyzed oxidations: A nanosecond laser transient absorbance reinvestigation, J. Phys. Chem. A, 1998, 102, 4559–4567.

    Article  CAS  Google Scholar 

  17. C. Tanielian, R. Seghrouchni and C. Schweitzer, Decatungstate photocatalyzed electron-transfer reactions of alkenes. Interception of the geminate radical ion pair by oxygen, J. Phys. Chem. A, 2003, 107 8, 1102–1111.

    Article  CAS  Google Scholar 

  18. R. F. Renneke, M. Pasquali and C. L. Hill, Polyoxometalate systems for the catalytic selective production of nonthermodynamic alkenes from alkanes. Nature of excited-states deactivation processes and control of subsequent thermal processes in polyoxometalate photoredox chemistry, J. Am. Chem. Soc., 1990, 112, 6585–6594.

    Article  CAS  Google Scholar 

  19. C. Tanielian and C. Wolff, Determination of the parameters controlling singlet oxygen production via oxygen and heavy-atom enhancement of triplet yields, J. Phys. Chem., 1995, 99, 9831–9837.

    Article  CAS  Google Scholar 

  20. C. Tanielian and C. Wolff, Porphyrin-sensitized generation of singlet molecular oxygen: comparison of steady-state and time-resolved methods, J. Phys. Chem., 1995, 99, 9825–9830.

    Article  CAS  Google Scholar 

  21. C. Tanielian and G. Heinrich, Effect of aggregation on the hematoporphyrin-sensitized production of singlet molecular oxygen, Photochem. Photobiol., 1995, 61, 131–135.

    Article  CAS  Google Scholar 

  22. C. Tanielian, C. Wolff and M. Esch, Singlet oxygen production in water: Aggregation and charge-transfer effects, J. Phys. Chem., 1996, 100, 6555–6560.

    Article  CAS  Google Scholar 

  23. R. D. Mair and A. Graupner, Determination of organic peroxides by iodine liberation procedures, Anal. Chem., 1964, 36, 194–204.

    Article  CAS  Google Scholar 

  24. C. T. Timpson, C. C. Carter and J. Olmsted, III, Mechanism of quenching of electronically excited ruthenium complexes by oxygen, J. Phys. Chem., 1989, 93, 4116–4120.

    Article  CAS  Google Scholar 

  25. Q. G. Mulazzani, H. Sun, M. Z. Hoffman, W. E. Ford and M. A. J. Rodgers, Quenching of the excited-states of ruthenium(II)-diimine complexes by oxygen, J. Phys. Chem., 1994, 98, 1145–1150.

    Article  CAS  Google Scholar 

  26. A. Abdel-Shafi, P. D. Beer, R. J. Mortimer and F. Wilkinson, Photosensitized generation of singlet oxygen from (substituted bipyridine)ruthenium(II) complexes, Helv. Chim. Acta, 2001, 84, 2784–2795.

    Article  CAS  Google Scholar 

  27. Z. Mehrdad, C. Schweitzer and R. Schmidt, Formation of O2(1Σg+), O2(1Δg) and O2(3Σg-) during oxygen quenching of nπ* triplet phenyl ketones: The role of charge transfer and sensitizer-oxygen complex structure, J. Phys. Chem. A., 2002, 106, 228–235.

    Article  CAS  Google Scholar 

  28. C. Tanielian, L. Golder and C. Wolff, Production and quenching of singlet oxygen by the sensitizer in dye-sensitized photo-oxygenations, J. Photochem., 1984, 25, 117–125.

    Article  CAS  Google Scholar 

  29. C. Tanielian R. Mechin, Quenching of singlet oxygen by methylene blue, Proceedings of the Xth IUPAC Symposium on Photochemistry, Presses polytechniques romandes, Lausanne, 1984, pp. 471–472.

    Google Scholar 

  30. C. Tanielian and L. Golder, Physical quenching of singlet oxygen by common reactive O21Δg Acceptor, Proceedings of the Xth IUPAC Symposium on Photochemistry, Presses polytechniques romandes, Lausanne, 1984, pp. 469–470.

    Google Scholar 

  31. C. Tanielian and R. Mechin, Interaction of singlet molecular oxygen with disubstituted olefins. Evidence for a physical quenching induced by the hydrocarbon chain, J. Phys. Chem., 1988, 92, 265–267.

    Article  CAS  Google Scholar 

  32. M. A. J. Rodgers, Solvent-induced deactivation of singlet oxygen: Additivity relationships in nonaromatic solvents, J. Am. Chem. Soc., 1983, 105, 6201–6205.

    Article  CAS  Google Scholar 

  33. R. Schmidt and E. Afshari, Collisional deactivation of O2(1Δg) by solvent molecules. Comparative experiments with 16O2 and 18O2, Ber. Bunsen-Ges. Phys. Chem., 1992, 96, 788–794.

    Article  CAS  Google Scholar 

  34. C. Schweitzer, Z. Mehrdad, F. Shafii and R. Schmidt, Common Marcus type dependence of the charge transfer induced processes in the sensitization and quenching of singlet oxygen by naphthalene derivatives, J. Phys. Chem. A., 2001, 105, 5309–5316.

    Article  CAS  Google Scholar 

  35. C. Schweitzer, Z. Mehrdad, F. Shafii and R. Schmidt, Charge transfer induced quenching of triplet sensitizers by ground state oxygen and of singlet oxygen by ground state sensitizers: A common deactivation channel, Phys. Chem. Chem. Phys., 2001, 3, 3095–3101.

    Article  CAS  Google Scholar 

  36. C. Schweitzer, Z. Mehrdad, A. Noll, E.-W. Grabner and R. Schmidt, Oxygen quenching of nπ* triplet phenyl ketones: Local excitation and local deactivation, Helv. Chim. Acta, 2001, 84, 2493–2507.

    Article  CAS  Google Scholar 

  37. C. S. Foote and S. Wexler, Singlet oxygen. A probable intermediate in photosensitized autoxidations, J. Am. Chem. Soc., 1964, 86, 3879–3880.

    Article  CAS  Google Scholar 

  38. A. Molinari, R. Amadelli, A. Mazzacani, G. Sartori and A. Maldotti, Tetralkylammonium and sodium decatungstate heterogenized on silica: effects of the nature of cations on the photocatalytic oxidation of organic substrates, Langmuir, 2002, 18, 5400–5405.

    Article  CAS  Google Scholar 

  39. O. L. J. Gijzeman, F. Kaufman and G. Porter, Oxygen quenching of aromatic triplet states in solution, J. Chem. Soc., Faraday Trans. 2, 1973, 69, 708–720.

    Article  CAS  Google Scholar 

  40. R. Schmidt, F. Shafii, C. Schweitzer, A. A. Abdel-Shafi and F. Wilkinson, Charge transfer and non-charge transfer processes competing in the sensitization of singlet oxygen: Formation of O2(1Σg+), O2(1Δg) and O2(3Σg-) during oxygen quenching of triplet excited naphthalene derivatives, J. Phys. Chem. A., 2001, 105, 1811–1817.

    Article  CAS  Google Scholar 

  41. C. Schweitzer, Z. Mehrdad, A. Noll, E.-W. Grabner and R. Schmidt, The mechanism of photosensitized generation of singlet oxygen during oxygen quenching of triplet states and the general dependence of the rate constants and efficiencies of O2(1Σg+), O2(1Δg) and O2(3Σg-) formation on sensitizer triplet state energy and oxidation potential, J. Phys. Chem. A, submitted for publication.

  42. D. J. McGarvey, P. G. Szekeres and F. Wilkinson, The efficiency of singlet oxygen generation by substituted naphthalenes in benzene. Evidence for participation of charge-transfer interactions, Chem. Phys. Lett., 1992, 199, 314–319.

    Article  CAS  Google Scholar 

  43. A. P. Darmanyan, W. Lee and W. S. Jenks, Charge transfer interactions in the generation of singlet oxygen O2(1Δg) by strong electron donors, J. Phys. Chem. A, 1999, 103, 2705–2711.

    Article  CAS  Google Scholar 

  44. F. Wilkinson and A. A. Abdel-Shafi, Mechanism of quenching of triplet states by molecular oxygen: Biphenyl derivatives in acetonitrile, J. Phys. Chem. A, 1997, 101, 5509–5516.

    Article  CAS  Google Scholar 

  45. F. Wilkinson and A. A. Abdel-Shafi, Mechanism of quenching of triplet states by molecular oxygen: Biphenyl derivatives in different solvents, J. Phys. Chem. A, 1999, 103, 5425–5435.

    Article  CAS  Google Scholar 

  46. C. Tanielian, M. Kobayashi and C. Wolff, Mechanism of photodynamic activity of pheophorbides, J. Biomed. Opt., 2001, 6, 252–256.

    Article  CAS  PubMed  Google Scholar 

  47. C. Tanielian, C. Schweitzer, R. Mechin and C. Wolff, Quantum yield of singlet oxygen production by monomeric and aggregated forms of hematoporphyrin derivative, Free Radical Biol. Med., 2001, 30, 208–212.

    Article  CAS  Google Scholar 

  48. M. V. Encinas and J. C. Scaiano, Reaction of benzophenone triplets with allylic hydrogens. A laser flash photolysis study, J. Am. Chem. Soc., 1981, 103, 6393–6397.

    Article  CAS  Google Scholar 

  49. A. P. Darmanyan, W. S. Jenks and P. Jardon, Charge-transfer quenching of singlet oxygen O2(1Δg) by amines and aromatic hydrocarbons, J. Phys. Chem. A., 1998, 102, 7420–7426.

    Article  CAS  Google Scholar 

  50. C. Tanielian and C. Wolff, Mechanism of physical quenching of singlet molecular oxygen by chlorophylls and related copmounds of biological interest, Photochem. Photobiol., 1988, 48, 277–280.

    Article  CAS  Google Scholar 

  51. F. P. Lossing and J. C. Traeger, Stabilization in cyclopentadienyl, cyclopentenyl, and cyclopentyl cations, J. Am. Chem. Soc., 1975, 97, 1579–1580.

    Article  CAS  Google Scholar 

  52. J. C. Scaiano, Intermolecular photoreductions of ketones, J. Photochem. 2, 1973/1974, 81–118.

    Google Scholar 

  53. P. J. Wagner, Chemistry of excited triplet organic carbonyl compounds, Top. Curr. Chem., 1976, 66, 1–51.

    Article  CAS  Google Scholar 

  54. N. E. Schore and N. J. Turro, Mechanism of the interaction of n,π* excited alkanones with electron-rich ethylenes, J. Am. Chem. Soc., 1975, 97, 2482–2488.

    Article  CAS  Google Scholar 

  55. I. E. Kochevar and P. J. Wagner, Quenching of triplet phenyl ketones by olefins, J. Am. Chem. Soc., 1972, 94, 3859–3865.

    Article  CAS  Google Scholar 

  56. R. O. Loutfy, S. K. Dogra and R. W. Yip, The interaction between the excited triplet state of ketones and olefins: the role of triplet exciplexes, Can. J. Chem., 1979, 57, 342–347.

    Article  CAS  Google Scholar 

  57. K. Gollnick, Oxygen and Oxy-radicals in Chemistry and Biology, On the mechanism of the ene-reactions with singlet oxygen O2(1Δg): dependance of rates on solvent polarity and structure, Oxygen and oxy-radicals in chemistry and biology, ed. M. A. J. Rodgers and E. L. Powers, Academic Press, New York, 1981, pp. 379–395.

    Google Scholar 

  58. M. Stratakis, M. Orfanopoulos, Regioselectivity in the ene reaction of singlet oxygen with alkenes, Tetrahedron, 2000, 56, 1595–1615.

    Article  CAS  Google Scholar 

  59. A. A. Gorman, The bimolecular reactivity of singlet molecular oxygen, Adv. Photochem., 1992, 17, 217–274.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Jean Kossanyi on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanielian, C., Schweitzer, C., Seghrouchni, R. et al. Polyoxometalate sensitization in mechanistic studies of photochemical reactions: The decatungstate anion as a reference sensitizer for photoinduced free radical oxygenations of organic compounds. Photochem Photobiol Sci 2, 297–305 (2003). https://doi.org/10.1039/b210786b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b210786b

Navigation