Skip to main content
Log in

From metal complexes to fullerene arrays: exploring the exciting world of supramolecular photochemistry fifteen years after its birth

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

After over 15 years of extensive research work in many laboratories worldwide, supramolecular photochemistry is a well-established and highly recognized branch of science. A brief retrospective view on the birth and infancy of this research area is given and some of the latest developments are discussed. In supramolecular photochemistry Ru(iii) and Cu(i) diimmine complexes and C60 fullerenes are some of the most widely investigated chromophores and over the years big efforts have been made to implement and tune their photophysical and excited state properties, which are briefly reviewed. Thanks to a huge amount of synthetic and analytical research work, it has been possible to insert or combine these organic and inorganic subunits in a variety of fascinating supramolecular architectures. Some results concerned with photoinduced processes occurring in dyads, triads, catenanes, rotaxanes, dendrimers, and protonated self-assembled architectures are briefly illustrated. The overall picture stemming form the current state of the art in supramolecular photochemistry is that of a discipline gaining an increasing degree of multi-disciplinarity. Interconnections with biology, physics and information technology are being established at a very fast pace, suggesting a bright future for this still young research field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Supramolecular Photochemistry, ed. V. Balzani, Reidel Publishing Company, Dordrecht, 1987.

    Google Scholar 

  2. J.-M. Lehn, Supramolecular chemistry-Scope and perspectives. Molecules, supermolecules and molecular devices (Nobel Lecture), Angew. Chem., Int. Ed. Engl., 1988, 27, 90–112.

    Google Scholar 

  3. D. J. Cram, The design of molecular hosts, guests, and their complexes (Nobel Lecture), Angew. Chem., Int. Ed Engl., 1988, 27, 1009–1020.

    Article  Google Scholar 

  4. C. J. Pedersen, The discovery of crown ethers (Nobel Lecture), Angew. Chem., Int. Ed. Engl., 1988, 27, 1021–1027.

    Article  Google Scholar 

  5. See: Chem. Rev., 2000, 100, 1683–1890, Special Issue on Memories and Switches.

  6. See: Ace. Chem. Res., 2001, 34, 409–522, Special Issue on Molecular Machines.

  7. V. Balzani and L. Moggi and F. Scandola, Towards a supramolecular photochemistry: assembly of molecular components to obtain photochemical molecular devices, in Supramolecular Photochemistry, ed. V. Balzani, Reidel Publishing Company, Dordrecht, 1987, pp. 1–28.

    Chapter  Google Scholar 

  8. D. Gust and T. A. Moore, Electron transfer in model systems for photosynthesis, in Supramolecular Photochemistry, ed. V. Balzani, Reidel Publishing Company, Dordrecht, The Netherlands, 1987, pp. 267–282.

    Chapter  Google Scholar 

  9. T. A. Moore and D. Gust and A. L. Moore and R. V. Bensasson and P. Seta and E. Bienvenue, Transmembrane charge transfer in model systems for photosynthesis, in Supramolecular Photochemistry, ed. V. Balzani, Reidel Publishing Company, Dordrecht, 1987, pp. 283–297.

    Chapter  Google Scholar 

  10. D. Gust and T. A. Moore and A. L. Moore, Mimicking photosynthetic solar energy transduction, Ace. Chem. Res., 2001, 34, 40–48.

    Article  CAS  Google Scholar 

  11. G. Kodis and P. A. Liddell and L. de la Garza and P. C. Clausen and J. S. Lindsey and A. L. Moore and T. A. Moore and D. Gust, Efficient energy transfer and electron transfer in an artificial photosynthetic antenna-reaction center complex, J. Phys Chem. A, 2002, 106, 2036–2048.

    Article  CAS  Google Scholar 

  12. G. Steinberg-Yfrach and J. L. Rigaud and E. N. Durantini and A. L. Moore and D. Gust and T. A. Moore, Light-driven production of ATP catalysed by F0F1-ATP synthase in an artificial photosynthetic membrane, Nature, 1998, 392, 479–482.

    Article  CAS  PubMed  Google Scholar 

  13. V. Balzani and F. Scandola, Supramolecular Photochemistry, Ellis Horwood, Chichester, 1991.

    Google Scholar 

  14. A. H. Zewail, Femtochemistry: Atomic-scale dynamics of the chemical bond using ultrafast lasers (Nobel lecture), Angew. Chem., Int. Ed., 2000, 39, 2587–2631.

    Google Scholar 

  15. S. I. Klink and H. Keizer and H. W. Hofstraat and F. C. J. M. van Veggel, Transition metal complexes as a new class of photosensitizers for near-infrared lanthanide luminescence, Synth. Met., 2002, 127, 213–216.

    Article  CAS  Google Scholar 

  16. H. Maas and A. Currao and G. Calzaferri, Encapsulated lanthanides as luminescent materials, Angew. Chem., Int. Ed., 2002, 41, 2495–2497.

    Article  CAS  Google Scholar 

  17. Molecular Catenanes, Rotaxanes and Knots. A Journey through the World of Molecular Topology, eds. J.-P. Sauvage and C. O. Dietrich-Buchecker, Wiley-VCH, Weinheim, 1999.

    Google Scholar 

  18. F M. Raymo and J. F. Stoddart, Interlocked macromolecules, Chem. Rev., 1999, 99, 1643–1663.

    Article  CAS  PubMed  Google Scholar 

  19. S. Serroni and S. Campagna, F. Puntoriero and C. Di Pietro and N. D. McClenaghan and F. Loiseau, Dendrimers based on ruthenium(ii) and osmium(ii) polypyridine complexes and the approach of using complexes as ligands and complexes as metals, Chem. Soc. Rev., 2001, 30, 367–375.

    Article  CAS  Google Scholar 

  20. S. K. Grayson and J. M. J. Frechet, Convergent dendrons and dendrimers: from synthesis to applications, Chem. Rev., 2001, 101, 3819–3867.

    Article  CAS  PubMed  Google Scholar 

  21. V. Balzani and S. Campagna and G. Denti and A. Juris and S. Serroni and M. Venturi, Designing dendrimers based on transition metal complexes. Light-harvesting properties and predetermined redox patterns, Ace. Chem. Res., 1998, 31, 26–34.

    Article  CAS  Google Scholar 

  22. A. Adronov and J. M. J. Frechet, Light-harvesting dendrimers, Chem. Commun., 2000 1701–1710.

    Google Scholar 

  23. V. Balzani and P. Ceroni and A. Juris and M. Venturi and S. Campagna and F. Puntoriero and S. Serroni, Dendrimers based on photoactive metal complexes. Recent advances, Coord Chem. Rev., 2001, 219, 545–572.

    Article  Google Scholar 

  24. N. Armaroli, Photoactive mono- and polynuclear Cu(i)-phen-anthrolines. A viable alternative to Ru(ii)-polypyridines?, Chem. Soc. Rev., 2001, 30, 113–124.

    Article  CAS  Google Scholar 

  25. S. Campagna and C. Di Pietro, F. Loiseau and B. Maubert and N. McClenaghan and R. Passalacqua, F. Puntoriero and V. Ricevuto and S. Serroni, Recent advances in luminescent polymetallic dendrimers containing the 2,3-bis(2′-pyridyl)pyrazine bridging ligand, Coord. Chem. Rev., 2002, 229, 67–74.

    Article  CAS  Google Scholar 

  26. M. N. Paddon-Row, Covalently linked systems based on organic compounds, in Electron Transfer in Chemistry, vol. 3, ed. V. Balzani, Wiley-VCH, Weinheim, 2001, pp. 179–271.

    CAS  Google Scholar 

  27. C. J. Chang and J. D. K. Brown and M. C. J. Chang and E. A. Baker and D. G. Nocera, Electron transfer in hydrogen-bonded donor-acceptor supramolecules, in Electron Transfer in Chemistry, vol. 3, ed. V. Balzani, Wiley-VCH, Weinheim, 2001, pp. 409–461.

    Article  CAS  Google Scholar 

  28. M. D. Ward and F. Barigelletti, Control of photoinduced energy transfer between metal-polypyridyl luminophores across rigid covalent, flexible covalent, or hydrogen-bonded bridges, Coord. Chem. Rev., 2001, 216, 127–154.

    Article  Google Scholar 

  29. M. R. Wasielewski, Photoinduced electron-transfer in supra-molecular systems for artificial photosynthesis, Chem. Rev., 1992, 92, 435–461.

    Article  CAS  Google Scholar 

  30. S. Campagna and S. Serroni, F. Puntoriero and C. Di Pietro and V. Ricevuto, Antennas, in Electron Transfer in Chemistry, vol. 5, ed. V. Balzani, Wiley-VCH, Weinheim, 2001, pp. 186–214.

    Article  CAS  Google Scholar 

  31. R. Ballardini, V. Balzani and A. Credi and M. T. Gandolfi and M. Venturi, Artificial molecular-level machines: Which energy to make them work?, Ace. Chem. Res., 2001, 34, 445–455.

    Article  CAS  Google Scholar 

  32. L. Fabbrizzi and A. Poggi, Sensors and switches from supramolecular chemistry, Chem. Soc. Rev., 1995, 24, 197–202.

    Article  CAS  Google Scholar 

  33. V. Balzani and A. Credi, F. M. Raymo and J. F. Stoddart, Artificial molecular machines, Angew. Chem., Int. Ed., 2000, 39, 3349–3391.

    Article  Google Scholar 

  34. See: Coord Chem. Rev., 2000, 205, 1-228, Special Issue on Luminescent Sensors.

  35. A. P. de Silva and N. McClenaghan and C. P. McCoy, Logic Gates, in Electron Transfer in Chemistry, vol. 5, ed. V. Balzani, Wiley-VCH, Weiheim, 2001, pp. 156–185.

    Article  Google Scholar 

  36. Y. Luo and C. P. Collier and J. O. Jeppesen and K. A. Nielsen and E. Delonno, G. Ho and J. Perkins and H. R. Tseng and T. Yamamoto and J. F. Stoddart and J. R. Heath, Two-dimensional molecular electronics circuits, ChemPhysChem, 2002, 3, 519–525.

    Article  CAS  PubMed  Google Scholar 

  37. V. Balzani and F. Scandola, Photochemical and photophysical devices, in Comprehensive Supramolecular Chemistry, vol. 10, ed. D. N. Reihnhoudt, Pergamon Press, Oxford, 1996, p. 687.

    CAS  Google Scholar 

  38. V. Balzani and A. Juris, Photochemistry and photophysics of Ru(ii)-polypyridine complexes in the Bologna group. From early studies to recent developments, Coord. Chem. Rev., 2001, 211, 97–115.

    Article  CAS  Google Scholar 

  39. T. J. Meyer, Photochemistry of metal coordination complexes: metal to ligand charge transfer excited states, Pure Appl. Chem., 1986, 58, 1193–1206.

    Article  CAS  Google Scholar 

  40. A. Juris and V. Balzani, F. Barigelletti and S. Campagna and P. Belser and A. von Zelewsky, Ru(ii)-polypyridine complexes: photophysics, photochemistry, electrochemistry, and chemiluminescence, Coord. Chem. Rev., 1988, 84, 85–277.

    Article  CAS  Google Scholar 

  41. C. Kaes and A. Katz and M. W. Hosseini, Bipyridine: The most widely used ligand. A review of molecules comprising at least two 2, 2′-bipyridine units, Chem. Rev., 2000, 100, 3553–3590.

    Article  CAS  PubMed  Google Scholar 

  42. G. F. Swiegers and T. J. Malefetse, New self-assembled structural motifs in coordination chemistry, Chem. Rev., 2000, 100, 3483–3537.

    Article  CAS  PubMed  Google Scholar 

  43. F. Scandola and M. T. Indelli and C. Chiorboli and C. A. Bignozzi, Photoinduced Electron and Energy-Transfer in Polynuclear Complexes, Top. Curr. Chem., 1990, 158, 73–149.

    Article  CAS  Google Scholar 

  44. V. Balzani and A. Juris and M. Venturi and S. Campagna and S. Serroni, Luminescent and redox-active polynuclear transition metal complexes, Chem. Rev., 1996, 96, 759–833.

    Article  CAS  PubMed  Google Scholar 

  45. F. R. Keene, Stereochemistry and polymetallic ligand-bridged molecular assemblies, Coord. Chem. Rev., 1997, 166, 121–159.

    Article  CAS  Google Scholar 

  46. K. S. Schanze and K. A. Walters, Photoinduced electron transfer in metal-organic dyads, in Organic and Inorganic Photochemistry, ed. V. Ramamurthy and K. S. Schanze, Marcel Dekker, New York, 1998, pp. 75–127.

    Google Scholar 

  47. F. Scandola and C. Chiorboli and M. T. Indelli and M. A. Rampi, Covalently linked systems containing metal complexes, in Electron Transfer in Chemistry, vol. 3, ed. V. Balzani, Wiley-VCH, Weinheim, 2001, pp. 337–408.

    Article  CAS  Google Scholar 

  48. A. Hagfeldt and M. Grätzel, Molecular photovoltaics, Ace. Chem. Res., 2000, 33, 269–277.

    Article  CAS  Google Scholar 

  49. C. A. Bignozzi and R. Argazzi and C. J. Kleverlaan, Molecular and supramolecular sensitization of nanocrystalline wide band-gap semiconductors with mononuclear and polynuclear metal complexes, Chem. Soc. Rev., 2000, 29, 87–96.

    Article  CAS  Google Scholar 

  50. H. Durr and S. Bossmann, Ruthenium polypyridine complexes. On the route to biomimetic assemblies as models for the photosynthetic reaction center, Ace. Chem. Res., 2001, 34, 905–917.

    Article  CAS  Google Scholar 

  51. L. C. Sun and L. Hammarström and B. Âkermark and S. Styring, Towards artificial photosynthesis: ruthenium-manganese chemistry for energy production, Chem. Soc. Rev., 2001, 30, 36–49.

    Article  CAS  Google Scholar 

  52. L. De Cola and P. Belser, Photoinduced energy and electron transfer processes in rigidly bridged dinuclear Ru/Os complexes, Coord. Chem. Rev., 1998, 177, 301–346.

    Article  Google Scholar 

  53. P. Belser and S. Bernhard and C. Blum and A. Beyeler and L. De Cola and V. Balzani, Molecular architecture in the field of photonic devices, Coord Chem. Rev., 1999, 192, 155–169.

    Article  Google Scholar 

  54. F. Barigelletti and L. Flamigni, Photoactive molecular wires based on metal complexes, Chem. Soc. Rev., 2000, 29, 1–12.

    Article  CAS  Google Scholar 

  55. M. D. Ward and C. M. White, F. Barigelletti, N. Armaroli, G. Calogero and L. Flamigni, Assemblies of luminescent ruthenium(ii)- and osmium(ii)-polypyridyl complexes based on hydrogen bonding, Coord Chem. Rev., 1998, 171, 481–488.

    Article  CAS  Google Scholar 

  56. N. R. M. Simpson and M. D. Ward and A. F. Morales and B. Ventura and F. Barigelletti, Photophysical properties of an assembly containing a [Ru(bpy)3]2+ chromophore and a [Ru(bpy)(CN)4]2- quencher unit linked by a hydrogen-bonded interface based on the [Ru(bpy)(CN)4]2-/aza-crown association, J. Chem. Soc, Dalton Trans., 2002, 2455–2461.

    Google Scholar 

  57. P. R. Ashton and R. Ballardini and V. Balzani and A. Credi and K. R. Dress and E. Ishow and C. J. Kleverlaan and O. Kocian and J. A. Preece and N. Spencer and J. F. Stoddart and M. Venturi and S. Wenger, A photochemically driven molecular-level abacus, Chem. Eur. J., 2000, 6, 3558–3574.

    Article  CAS  PubMed  Google Scholar 

  58. W. E. Ford and M. A. J. Rodgers, Reversible triplet triplet energy-transfer within a covalently linked bichromophoric molecule, J. Phys. Chem., 1992, 96, 2917–2920.

    Article  CAS  Google Scholar 

  59. D. S. Tyson and J. Bialecki and F. N. Castellano, Ruthenium(ii) complex with a notably long excited state lifetime, Chem. Commun., 2000, 2355-2356.

    Google Scholar 

  60. D. S. Tyson and K. B. Henbest and J. Bialecki and F. N. Castellano, Excited state processes in ruthenium(ii)/pyrenyl complexes displaying extended lifetimes, J. Phys. Chem. A, 2001, 105, 8154–8161.

    Article  CAS  Google Scholar 

  61. N. D. McClenaghan, F. Barigelletti and B. Maubert and S. Campagna, Towards ruthenium(ii) polypyridine complexes with prolonged and predetermined excited state lifetimes, Chem. Commun., 2002, 602–603.

    Google Scholar 

  62. A. von Zelewsky and O. Mamula, The bright future of stereoselective synthesis of co-ordination compounds, J. Chem. Soc, Dalton Trans., 2000, 219–231.

    Google Scholar 

  63. J. P. Sauvage and J. P. Collin and J. C. Chambron and S. Guillerez and C. Coudret, V. Balzani, F. Barigelletti and L. De Cola and L. Flamigni, Ruthenium(ii) and osmium(ii) bis(terpyridine) complexes in covalently-linked multicomponent systems: synthesis, electro-chemical behavior, absorption spectra, and photochemical and photophysical properties, Chem. Rev., 1994, 94, 993–1019.

    Article  CAS  Google Scholar 

  64. M. Maestri, N. Armaroli, V. Balzani and E. C. Constable and A. Thompson, Complexes of the ruthenium(ii)-2, 2/6′, 2″-terpyridine family. Effect of electron-accepting and electron-donating substituents on the photophysical and electrochemical properties, Inorg Chem., 1995, 34, 2759–2767.

    Article  CAS  Google Scholar 

  65. E. C. Constable and C. E. Housecroft and E. R. Schofield and S. Encinas, N. Armaroli, F. Barigelletti and L. Flamigni and E. Figgemeier and J. G. Vos, Luminescent molecular wires with 2,5-thiophenediyl spacers linking Ru(terpy)2 units, Chem. Commun., 1999, 869–870.

    Google Scholar 

  66. A. El-ghayoury and A. Harriman and A. Khatyr and R. Ziessel, Controlling electronic communication in ethynylated-polypyridine metal complexes, Angew. Chem., Int. Ed., 2000, 39, 185–189.

    Article  CAS  Google Scholar 

  67. M. I. J. Poison and N. J. Taylor and G. S. Hanan, Facile syntheses of tridentate ligands for room-temperature luminescence in ruthenium complexes, Chem. Commun., 2002, 1356–1357.

    Google Scholar 

  68. Y. Q. Fang, N J. Taylor and G. S. Hanan, F. Loiseau and R. Passalacqua and S. Campagna and H. Nierengarten and A. Van Dorsselaer, A strategy for improving the room-temperature luminescence properties of Ru(ii) complexes with tridentate ligands, J. Am. Chem. Soc., 2002, 124, 7912–7913.

    Article  CAS  PubMed  Google Scholar 

  69. A. Harriman and J. P. Sauvage, Strategy for constructing photosynthetic models: Porphyrin-containing modules assembled around transition metals, Chem. Soc. Rev., 1996, 25, 41–48.

    Article  CAS  Google Scholar 

  70. L. Flamigni and F. Barigelletti and N. Armaroli and J. P. Collin and J. P. Sauvage and J. A. G. Williams, Photoinduced processes in highly coupled multicomponent arrays based on a ruthenium(ii)bis(terpyridine) complex and porphyrins, Chem. Eur. J., 1998, 4, 1744–1754.

    Article  CAS  Google Scholar 

  71. L. Flamigni, F. Barigelletti and N. Armaroli and B. Ventura and J. P. Collin and J. P. Sauvage and J. A. G. Williams, Triplet-triplet energy transfer between porphyrins linked via a ruthenium(ii) bisterpyridine complex, Inorg. Chem., 1999, 38, 661–667.

    Article  CAS  Google Scholar 

  72. L. Flamigni, F. Barigelletti and N. Armaroli and J. P. Collin and I. M. Dixon and J. P. Sauvage and J. A. G. Williams, Photoinduced processes in multicomponent arrays containing transition metal complexes, Coord. Chem. Rev., 1999, 192, 671–682.

    Article  Google Scholar 

  73. I. M. Dixon and J. P. Collin and J. P. Sauvage and L. Flamigni and S. Encinas and F. Barigelletti, A family of luminescent coordination compounds: iridium(iii) polyimine complexes, Chem. Soc. Rev., 2000, 29, 385–391.

    Article  CAS  Google Scholar 

  74. J. P. Collin and I. M. Dixon and J. P. Sauvage and J. A. G. Williams, F. Barigelletti and L. Flamigni, Synthesis and photophysical properties of iridium(iii) bisterpyridine and its homologues: a family of complexes with a long-lived excited state, J. Am. Chem. Soc., 1999, 121, 5009–5016.

    Article  CAS  Google Scholar 

  75. I. M. Dixon and J. P. Collin and J. P. Sauvage and L. Flamigni, Porphyrinic dyads and triads assembled around iridium(iii) bis-terpyridine: photoinduced electron transfer processes, Inorg. Chem., 2001, 40, 5507–5517.

    Article  CAS  PubMed  Google Scholar 

  76. L. Flamigni, G. Marconi and I. M. Dixon and J. P. Collin and J. P. Sauvage, Switching of electron- to energy-transfer by selective excitation of different chromophores in arrays based on porphyrins and a polypyridyl iridium complex, J. Phys. Chem. B, 2002, 106, 6663–6671.

    Article  CAS  Google Scholar 

  77. D. R. McMillin and K. M. McNett, Photoprocesses of copper complexes that bind to DNA, Chem. Rev., 1998, 98, 1201–1219.

    Article  PubMed  Google Scholar 

  78. D. V. Scaltrito and D. W. Thompson and J. A. O’Callaghan and G. J. Meyer, MLCT excited states of cuprous bis-phenanthroline coordination compounds, Coord. Chem. Rev., 2000, 208, 243–266.

    Article  CAS  Google Scholar 

  79. R. M. Everly and D. R. McMillin, Reinvestigation of the absorbing and emitting charge-transfer excited-states of [Cu(NN)2]+ systems, J. Phys. Chem., 1991, 95, 9071–9075.

    Article  CAS  Google Scholar 

  80. C. T. Cunningham and J. J. Moore and K. L. H. Cunningham and P. E. Fanwick and D. R. McMillin, Structural and photophysical studies of [Cu(NN)2]+ systems in the solid state. Emission at last from complexes with simple 1,10-phenanthroline ligands, Inorg. Chem., 2000, 39, 3638–3644.

    Article  CAS  PubMed  Google Scholar 

  81. M. T. Miller and P. K. Gantzel and T. B. Karpishin, Structures of the copper(i) and copper(ii) complexes of 2,9-diphenyl-1,10-phenanthroline: implications for excited-state structural distortion, Inorg. Chem., 1998, 37, 2285–2290.

    Article  CAS  PubMed  Google Scholar 

  82. L. X. Chen, G. Jennings and T. Liu and D. J. Gosztola and J. P. Hessler and D. V. Scaltrito and G. J. Meyer, Rapid excited-state structural reorganization captured by pulsed X-rays, J. Am. Chem. Soc., 2002, 124, 10861–10867.

    Article  CAS  PubMed  Google Scholar 

  83. R. M. Everly and D. R. McMillin, Concentration-dependent lifetimes of [Cu(NN)2]+ systems — Exciplex quenching from the ion-pair state, Photochem. Photobiol., 1989, 50, 711–716.

    Article  CAS  Google Scholar 

  84. C. T. Cunningham and K. L. H. Cunningham and J. F. Michalec and D. R. McMillin, Cooperative substituent effects on the excited states of copper phenanthrolines, Inorg. Chem., 1999, 38, 4388–4392.

    Article  CAS  PubMed  Google Scholar 

  85. J. R. Kirchhoff and R. E. Gamache and M. W. Blaskie and A. A. Del Paggio and R. K. Lengel and D. R. McMillin, Temperature-dependence of luminescence from [Cu(NN)2]+ systems in fluid solution. Evidence for the participation of two excited-states, Inorg. Chem., 1983, 22, 2380–2384.

    Article  CAS  Google Scholar 

  86. D. Felder and J. F. Nierengarten and F. Barigelletti and B. Ventura and N. Armaroli, Highly luminescent Cu(i)-phenanthroline complexes in rigid matrix and temperature dependence of the photophysical properties, J. Am. Chem. Soc., 2001, 123, 6291–6299.

    Article  CAS  PubMed  Google Scholar 

  87. M. T. Miller and P. K. Gantzel and T. B. Karpishin, A highly emissive heteroleptic copper(i) bis(phenanthroline) complex: [Cu(dbp)-(dmp)]+ (dbp=2,9-di-tert-butyl-1,10-phenanthroline; dmp=2,9-dimethyl-1,10-phenanthroline), J. Am. Chem. Soc., 1999, 121, 4292–4293.

    Article  CAS  Google Scholar 

  88. S. M. Kuang and D. G. Cuttell and D. R. McMillin and P. E. Fanwick and R. A. Walton, Synthesis and structural characterization of Cu(i) and that Ni(ii) complexes that contain the bis[2-(diphenyl-phosphino)phenyl]ether ligand. Novel emission properties for the Cu(i) species, Inorg. Chem., 2002, 41, 3313–3322.

    Article  CAS  PubMed  Google Scholar 

  89. F. Vögtle and I. Lüer, V. Balzani and N. Armaroli, Endoreceptors with convergent phenanthroline units: a molecular cavity for 6 guest molecules, Angew. Chem., Int. Ed Engl., 1991, 30, 1333–1336.

    Article  Google Scholar 

  90. C. O. Dietrich-Buchecker and J. F. Nierengarten and J. P. Sauvage, N. Armaroli, V. Balzani and L. De Cola, Dicopper(i) trefoil knots and related unknotted molecular systems: influence of ring size and structural factors on their synthesis and electrochemical and excited-state properties, J. Am. Chem. Soc., 1993, 115, 11237–11244.

    Article  CAS  Google Scholar 

  91. N. Armaroli and L. De Cola, V. Balzani and J. P. Sauvage and C. O. Dietrich-Buchecker and J. M. Kern and A. Bailal, Absorption and emission properties of a 2-catenand, its protonated forms, and its complexes with Li+, Cu+, Ag+, Co2+, Ni2+, Zn2+, Pd2+ and Cd2+ — Tuning of the luminescence over the whole visible spectral region, J. Chem. Soc, Dalton Trans., 1993, 3241–3247.

    Google Scholar 

  92. N. Armaroli, V. Balzani, F. Barigelletti and L. De Cola and L. Flamigni and J. P. Sauvage and C. Hemmert, Supramolecular photochemistry and photophysics. A [3]-catenand and its mononuclear and homodinuclear and heterodinuclear [3]-catenates, J. Am. Chem. Soc., 1994, 116, 5211–5217.

    Article  CAS  Google Scholar 

  93. N. Armaroli, V. Balzani and L. De Cola and C. Hemmert and J. P. Sauvage, Multi-protonation of a [3]-catenand and a mono-copper [3]-Catenate: absorption spectra and luminescence properties, New J. Chem., 1994, 18, 775–782.

    CAS  Google Scholar 

  94. C. O. Dietrich-Buchecker and J. P. Sauvage and N. Armaroli and P. Ceroni and V. Balzani, Knotted heterodinuclear complexes, Angew. Chem., Int. Ed Engl., 1996, 35, 1119–1121.

    Article  CAS  Google Scholar 

  95. J. M. Kern and J. P. Sauvage and J. L. Weidmann, N. Armaroli and L. Flamigni and P. Ceroni and V. Balzani, Complexes containing 2,9-bis(p-biphenylyl)-1,10-phenanthroline units incorporated into a 56-membered ring. Synthesis, electrochemistry, and photophysical properties, Inorg. Chem., 1997, 36, 5329–5338.

    Article  CAS  Google Scholar 

  96. D. J. Cardenas and J. P. Collin and P. Gavina and J. P. Sauvage and A. De Cian and J. Fischer, N. Armaroli and L. Flamigni, V Vicinelli and V Balzani, Synthesis, X-ray structure, and electrochemical and excited-state properties of multicomponent complexes made of a [Ru(tpy)2]2+ unit covalently linked to a [2]-catenate moiety. Controlling the energy-transfer direction by changing the catenate metal ion, J. Am. Chem. Soc., 1999, 121, 5481–5488.

    Article  CAS  Google Scholar 

  97. A. Livoreil and J. P. Sauvage and N. Armaroli, V. Balzani and L. Flamigni and B. Ventura, Electrochemically and photochemically driven ring motions in a disymmetrical copper [2]-catenate, J. Am. Chem. Soc., 1997, 119, 12114–12124.

    Article  CAS  PubMed  Google Scholar 

  98. N. Armaroli, V. Balzani and J. P. Collin and P. Gavina and J. P. Sauvage and B. Ventura, Rotaxanes incorporating two different coordinating units in their thread: Synthesis and electrochemically and photochemically induced molecular motions, J. Am. Chem. Soc., 1999, 121, 4397–4408.

    Article  CAS  Google Scholar 

  99. N. Armaroli and L. De Cola, V. Balzani and J. P. Sauvage and C. O. Dietrich-Buchecker and J. M. Kern, Absorption and luminescence properties of 1,10-phenanthroline, 2,9-diphenyl-1,10-phen-anthroline, 2,9-dianisyl-1,10-phenanthroline and their protonated forms in dichloromethane solution, J. Chem. Soc, Faraday Trans., 1992, 88, 553–556.

    Article  CAS  Google Scholar 

  100. N. Armaroli and J. F. Eckert and J. F. Nierengarten, Controlling the energy-transfer direction: an oligophenylenevinylene-phenanthroline dyad acting as a proton triggered molecular switch, Chem. Commun., 2000, 2105–2106.

    Google Scholar 

  101. T. Gunnlaugsson and D. A. Mac Donaill and D. Parker, Lanthanide macrocyclic quinolyl conjugates as luminescent molecular-level devices, J. Am. Chem. Soc., 2001, 123, 12866–12876.

    Article  CAS  PubMed  Google Scholar 

  102. L. Gobbi and P. Seiler and F. Diederich, V. Grämlich and C. Boudon and J. P. Gisselbrecht and M. Gross, Photoswitchable tetraethynyl-ethene-dihydroazulene chromophores, Helv. Chim. Acta, 2001, 84, 743–777.

    Article  CAS  Google Scholar 

  103. A. P. de Silva and D. B. Fox and A. J. M. Huxley and T. S. Moody, Combining luminescence, coordination and electron transfer for signalling purposes, Coord Chem. Rev., 2000, 205, 41–57.

    Article  Google Scholar 

  104. L. Fabbrizzi and M. Licchelli, G. Rabaioli and A. Taglietti, The design of luminescent sensors for anions and ionisable analytes, Coord Chem. Rev., 2000, 205, 85–108.

    Article  CAS  Google Scholar 

  105. N. Armaroli, V. Balzani and I. Lüer and F. Vögtle, Supramolecular photochemistry and photophysics. Absorption spectra and luminescence properties of a large cage supermolecule and of its protonated forms, Gazz. Chim. ltd., 1994, 124, 17–21.

    CAS  Google Scholar 

  106. C. O. Dietrich-Buchecker and J. P. Sauvage, N. Armaroli and P. Ceroni and V. Balzani, Protonation-driven formation of a double-stranded structure: a photophysical and 1H-NMR study, New J. Chem., 1996, 20, 801–808.

    CAS  Google Scholar 

  107. N. Armaroli and P. Ceroni, V. Balzani and J. M. Kern and J. P. Sauvage and J. L. Weidmann, Protonation of free 2,9-bis(p-biphenylyl)-1,10-phenanthroline sites in a 56-membered macrocycle and in its Rei and Cui complexes. Absorption spectra, luminescence properties, and excited state interactions, J. Chem. Soc, Faraday Trans., 1997, 93, 4145–4150.

    Article  CAS  Google Scholar 

  108. A. Bencini and M. A. Bernardo and A. Bianchi and V. Fusi and C. Giorgi and F. Pina and B. Valtancoli, Macrocyclic polyamines containing phenan-throline moieties. Fluorescent chemosensors for H+ and Zn2+ ions, Eur. J. Inorg. Chem., 1999, 1911–1918.

    Google Scholar 

  109. W. Krätschmer and L. D. Lamb and K. Fostiropoulos and D. R. Huffman, Solid C60. A new form of carbon, Nature, 1990, 347, 354–358.

    Article  Google Scholar 

  110. F. Wudl, The chemical properties of buckminsterfullerene (C60) and the birth and infancy of fulleroids, Ace. Chem. Res., 1992, 25, 157–161.

    Article  CAS  Google Scholar 

  111. M. Prato, Fullerenes and Related Structures, Top. Curr. Chem., 1999, 199, 173–187.

    Article  CAS  Google Scholar 

  112. J. Mattay and L. Ulmer and A. Sotzmann, Photophysics and photochemistry of fullerenes and fullerene derivatives, in Molecular and Supramolecular Photochemistry, Vol. 8, ed. V. Ramamurthy and K. S. Schanze, Marcel Dekker, New York, 2001, pp. 637–752.

    CAS  Google Scholar 

  113. J. W. Arbogast and A. P. Darmanyan and C. S. Foote and Y. Rubin, F. N. Diederich and M. M. Alvarez and S. J. Anz and R. L. Whetten, Photophysical properties of C60, J. Phys Chem., 1991, 95, 11–12.

    Article  CAS  Google Scholar 

  114. R. V. Bensasson and E. Bienvenue and C. Fabre and J. M. Janot and E. J. Land and S. Leach and V. Leboulaire and A. Rassat and S. Roux and P. Seta, Photophysical properties of three methanofullerene derivatives, Chem. Eur. J., 1998, 4, 270–278.

    Article  CAS  Google Scholar 

  115. N. Armaroli and C. Boudon and D. Felder and J. P. Gisselbrecht and M. Gross and G. Marconi and J. F. Nicoud and J. F. Nierengarten and V. Vicinelli, A copper(i) bis-phenanthroline complex buried in fullerene-functionalized dendritic black boxes, Angew. Chem., Int. Ed., 1999, 38, 3730–3733.

    Article  CAS  Google Scholar 

  116. D. M. Guldi and M. Prato, Excited-state properties of C60 fullerene derivatives, Ace. Chem. Res., 2000, 33, 695–703.

    Article  CAS  Google Scholar 

  117. J. Catalan and J. Elguero, Fluorescence of C60 and C70, J. Am. Chem. Soc., 1993, 115, 9249–9252.

    Article  CAS  Google Scholar 

  118. T. Hamano and K. Okuda and T. Mashino and M. Hirobe and K. Arakane and A. Ryu and S. Mashiko and T. Nagano, Singlet oxygen production from fullerene derivatives: effect of sequential functionalization of the fullerene core, Chem. Commun., 1997, 21–22.

    Google Scholar 

  119. F. Prat and R. Stackow and R. Bernstein and W. Y Qian, Y. Rubin and C. S. Foote, Triplet-state properties and singlet oxygen generation in a homologous series of functionalized fullerene derivatives, J. Phys. Chem. A, 1999, 103, 7230–7235.

    Article  CAS  Google Scholar 

  120. K. Kordatos and T. Da Ros and M. Prato and S. Leach and E. J. Land and R. V. Bensasson, Triplet state properties of iV-mTEG[60]fullero-pyrrolidine mono and bisadduct derivatives, Chem. Phys. Lett., 2001, 334, 221–228.

    Article  CAS  Google Scholar 

  121. L. Echegoyen and L. E. Echegoyen, Electrochemistry of fullerenes and their derivatives, Ace. Chem. Res., 1998, 31, 593–601.

    Article  CAS  Google Scholar 

  122. N. Armaroli, Photoinduced energy transfer processes in function-alized fullerenes, in Fullerenes: from synthesis to optoelectronic properties, ed. D. M. Guldi and N. Martin, Kluwer Academic Publishers, Dordrecht, 2002, pp. 137–162.

    Chapter  Google Scholar 

  123. F. Diederich and M. Gomez-Lopez, Supramolecular fullerene chemistry, Chem. Soc. Rev., 1999, 28, 263–277.

    Article  CAS  Google Scholar 

  124. J. L. Segura and N. Martin, [60]Fullerene dimers, Chem. Soc. Rev., 2000, 29, 13–25.

    Article  CAS  Google Scholar 

  125. J. F. Nierengarten, Fullerodendrimers: A new class of compounds for supramolecular chemistry and materials science applications, Chem. Eur. J., 2000, 6, 3667–3670.

    Article  CAS  PubMed  Google Scholar 

  126. D. M. Guldi and N. Martin, Fullerene architectures made to order; biomimetic motifs — design and features, J. Mater. Chem., 2002, 12, 1978–1992.

    Article  CAS  Google Scholar 

  127. H. Imahori and Y. Sakata, Fullerenes as novel accepters in photosynthetic electron transfer, Eur. J. Org. Chem., 1999, 2445–2457.

    Google Scholar 

  128. D. M. Guldi, Fullerene-porphyrin architectures; photosynthetic antenna and reaction center models, Chem. Soc. Rev., 2002, 31, 22–36.

    Article  CAS  PubMed  Google Scholar 

  129. M. D. Meijer, G. P. M. van Klink and G. van Koten, Metal-chelating capacities attached to fullerenes, Coord. Chem. Rev., 2002, 230, 141–163.

    Article  CAS  Google Scholar 

  130. H. Imahori and H. Yamada and D. M. Guldi, Y. Endo and A. Shimomura and S. Kundu and K. Yamada and T. Okada, Y. Sakata and S. Fukuzumi, Comparison of reorganization energies for intra- and intermolecular electron transfer, Angew. Chem., Int. Ed., 2002, 41, 2344–2347.

    Article  CAS  Google Scholar 

  131. See: J. Mater. Chem., 2002, 12, 1931–2159, Special Issue on Functionalized Fullerene Materials.

  132. V. W. W. Yam, Luminescent carbon-rich rhenium(i) complexes, Chem. Commun., 2001, 789–796.

    Google Scholar 

  133. N. Armaroli and G. Accorsi and D. Felder and J. F. Nierengarten, Photophysical properties of the Re(i) and Ru(ii) complexes of a new C60-substituted bipyridine ligand, Chem. Eur. J., 2002, 8, 2314–2323.

    Article  CAS  PubMed  Google Scholar 

  134. N. Armaroli, F. Diederich and C. O. Dietrich-Buchecker and L. Flamigni, G. Marconi and J. F. Nierengarten and J. P. Sauvage, A copper(i)-complexed rotaxane with two fullerene stoppers: synthesis, electrochemistry, and photoinduced processes, Chem. Eur. J., 1998, 4, 406–416.

    Article  CAS  Google Scholar 

  135. P. A. Liddell and J. P. Sumida and A. N. Macpherson and L. Noss and G. R. Seely and K. N. Clark and A. L. Moore and T. A. Moore and D. Gust, Preparation and photophysical studies of porphyrin-C60 dyads, Photochem. Photobiol., 1994, 60, 537–541.

    Article  CAS  Google Scholar 

  136. D. I. Schuster, Synthesis and photophysics of new types of fullerene-porphyrin dyads, Carbon, 2000, 38, 1607–1614.

    Article  CAS  Google Scholar 

  137. H. Imahori and K. Tamaki, Y. Araki and T. Hasobe and O. Ito and A. Shimomura and S. Kundu and T. Okada, Y. Sakata and S. Fukuzumi, Linkage dependent charge separation and charge recombination in porphyrin-pyromellitimide-fullerene triads, J. Phys. Chem. A, 2002, 106, 2803–2814.

    Article  CAS  Google Scholar 

  138. N. Armaroli, F. Diederich and L. Echegoyen and T. Habicher and L. Flamigni, G. Marconi and J. F. Nierengarten, A new pyridyl-substituted methanofullerene derivative. Photophysics, electrochemistry and self-assembly with zinc(ii) meso-tetraphenylporphyrin (ZnTPP), New J. Chem., 1999, 23, 77–83.

    Article  CAS  Google Scholar 

  139. F. D’Souza, G. R. Deviprasad and M. S. Rahman and J. P. Choi, Self-assembled porphyrin-C60 and porphycene-C60 complexes via metal axial coordination, Inorg. Chem., 1999, 38, 2157–2160.

    Article  PubMed  Google Scholar 

  140. D. Sun, F. S. Tham and C. A. Reed and P. D. W. Boyd, Extending supramolecular fullerene-porphyrin chemistry to pillared metal-organic frameworks, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 5088–5092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. J. Y. Zheng and K. Tashiro, Y. Hirabayashi and K. Kinbara and K. Saigo and T. Aida and S. Sakamoto and K. Yamaguchi, Cyclic dimers of metalloporphyrins as tunable hosts for fullerenes: a remarkable effect of rhodium(ra), Angew. Chem., Int. Ed., 2001, 40, 1858–1861.

    Google Scholar 

  142. N. Armaroli and G. Marconi and L. Echegoyen and J. P. Bourgeois and F. Diederich, Charge transfer interactions in face-to-face porphyrin-fullerene systems: solvent-dependent luminescence in the infrared spectral region, Chem. Eur. J., 2000, 6, 1629–1645.

    Article  CAS  PubMed  Google Scholar 

  143. M. W. Grinstaff, Biodendrimers: new polymeric biomaterials for tissues engineering, Chem. Eur. J., 2002, 8, 2838–2846.

    Article  CAS  Google Scholar 

  144. C. S. Cameron and C. B. Gorman, Effects of site encapsulation on electrochemical behavior of redox-active core dendrimers, Adv. Funct. Mater, 2002, 12, 17–20.

    Article  CAS  Google Scholar 

  145. J. M. J. Frechet, Dendrimers and supramolecular chemistry, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 4782–4787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. S. E. Stiriba and H. Frey and R. Haag, Dendritic polymers in biomedical applications: From potential to clinical use in diagnostics and therapy, Angew. Chem., Int. Ed., 2002, 41, 1329–1334.

    Article  CAS  Google Scholar 

  147. F. Diederich and B. Felber, Supramolecular chemistry of dendrimers with functional cores, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 4778–4781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. L. J. Twyman and A. S. H. King and I. K. Martin, Catalysis inside dendrimers, Chem. Soc. Rev., 2002, 31, 69–82.

    Article  CAS  PubMed  Google Scholar 

  149. S. C. Zimmerman and L. J. Lawless, Supramolecular chemistry of dendrimers, Top. Curr. Chem., 2001, 217, 95–120.

    Article  CAS  Google Scholar 

  150. A. Hirsch and O. Vostrowsky, Dendrimers with carbon rich-cores, Top. Curr. Chem., 2001, 217, 51–93.

    Article  CAS  Google Scholar 

  151. S. Hecht and J. M. J. Frechet, Dendritic encapsulation of function: Applying nature’s site isolation principle from biomimetics to materials science, Angew. Chem., Int. Ed., 2001, 40, 74–91.

    Article  CAS  Google Scholar 

  152. C. B. Gorman and J. C. Smith, Structure-property relationships in dendritic encapsulation, Ace. Chem. Res., 2001, 34, 60–71.

    Article  CAS  Google Scholar 

  153. J. F. Nierengarten and J. F. Eckert and Y. Rio and M. D. Carreon and J. L. Gallani and D. Guillon, Amphiphilic diblock dendrimers: Synthesis and incorporation in Langmuir and Langmuir-Blodgett films, J. Am. Chem. Soc., 2001, 123, 9743–9748.

    Article  CAS  PubMed  Google Scholar 

  154. D. Felder and H. Nierengarten and J. P. Gisselbrecht and C. Boudon and E. Leize and J. F. Nicoud and M. Gross and A. Van Dorsselaer and J. F. Nierengarten, Fullerodendrons: synthesis, electrochemistry and reduction in the electrospray source for mass spectrometry analysis, New J. Chem., 2000, 24, 687–695.

    Article  CAS  Google Scholar 

  155. R. Kunieda and M. Fujitsuka and O. Ito and M. Ito, Y. Murata and K. Komatsu, Photochemical and photophysical properties of C60 dendrimers studied by laser flash photolysis, J. Phys. Chem. B, 2002, 106, 7193–7199.

    Article  CAS  Google Scholar 

  156. Y. Murata and M. Ito and K. Komatsu, Synthesis and properties of novel fullerene derivatives having dendrimer units and the fullerenyl anions generated therefrom, J. Mater. Chem., 2002, 12, 2009–2020.

    Article  CAS  Google Scholar 

  157. Y. Rio and G. Accorsi and E. Nierengarten, J.-L. Rehspringer and B. Hönerlage, G. Kopitkovas and A. Chugreev and A. Van Dorsselaer, N. Armaroli and J. F. Nierengarten, Fullerodendrimers with peripheral triethyleneglycol chains: synthesis, mass spectrometric characterisation, and photophysical properties, New J. Chem., 2002, 26, 1146–1154.

    Article  CAS  Google Scholar 

  158. J.-F. Nierengarten and N. Armaroli and G. Accorsi and Y. Rio and J. F. Eckert, [60]Fullerene: a versatile photoactive core for dendrimer chemistry, Chem. Eur. J., 2003, 9, 36–41.

    Article  CAS  PubMed  Google Scholar 

  159. G. Accorsi and N. Armaroli and J. F. Eckert and J. F. Nierengarten, Functionalization of [60]fullerene with new light-collecting oligophenylenevinylene-terminated dendritic wedges, Tetrahedron Lett., 2002, 43, 65–68.

    Article  CAS  Google Scholar 

  160. J. F. Nierengarten and J. F. Eckert and J. F. Nicoud and L. Ouali and V. Krasnikov and G. Hadziioannou, Synthesis of a C60-oligophenylenevinylene hybrid and its incorporation in a photovoltaic device, Chem. Commun., 1999, 617–618.

    Google Scholar 

  161. J. F. Eckert and J. F. Nicoud and J. F. Nieren garten and S. G. Liu and L. Echegoyen and F. Barigelletti and N. Armaroli and L. Ouali and V. Krasnikov and G. Hadziioannou, Fullerene-oligophenylenevinylene hybrids: synthesis, electronic properties, and incorporation in photovoltaic devices, J. Am. Chem. Soc., 2000, 122, 7467–7479.

    Article  CAS  Google Scholar 

  162. N. S. Sariciftci and L. Smilowitz and A. J. Heeger and F. Wudl, Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene, Science, 1992, 258, 1474–1476.

    Article  CAS  PubMed  Google Scholar 

  163. C.J. Brabec, N. S. Sariciftci and J. C. Hummelen, Plastic solar cells, Adv. Fund. Mater, 2001, 1, 15–26.

    Article  Google Scholar 

  164. N. Armaroli, F. Barigelletti and P. Ceroni and J. F. Eckert and J. F. Nicoud and J. F. Nierengarten, Photoinduced energy transfer in a fullerene-oligophenylenevinylene conjugate, Chem. Commun., 2000, 599–600.

    Google Scholar 

  165. E. Peeters and P. A. van Hal and J. Knol and C. J. Brabec and N. S. Sariciftci and J. C. Hummelen and R. A. J. Janssen, Synthesis, photophysical properties, and photovoltaic devices of oligo(p-phenylene vinylene)-fullerene dyads, J. Phys. Chem. B, 2000, 104, 10174–10190.

    Article  CAS  Google Scholar 

  166. P. A. van Hal and R. A. J. Janssen, G. Lanzani, G. Cerullo and M. Zavelani-Rossi and S. De Silvestri, Two-step mechanism for the photoinduced intramolecular electron transfer in oligo-(p-phenylene vinylene)-fullerene dyads, Phys. Rev. B, 2001, 64, 752061–752067.

    Google Scholar 

  167. N. Armaroli, G. Accorsi and J. P. Gisselbrecht and M. Gross and V. Krasnikov and D. Tsamouras and G. Hadziioannou and M. J. Gomez-Escalonilla, F. Langa and J. F. Eckert and J. F. Nierengarten, Photoinduced processes in fullerenopyrrolidine and fullerenopyrazoline derivatives substituted with an oligophenylenevinylene moiety, J. Mater. Chem., 2002, 12, 2077–2087.

    Article  CAS  Google Scholar 

  168. P. A. van Hal and J. Knol and B. M. W. Langeveld-Voss and S. C. J. Meskers and J. C. Hummelen and R. A. J. Janssen, Photoinduced energy and electron transfer in fullerene-oligothiophene-fullerene triads, J. Phys. Chem. A, 2000, 104, 5974–5988.

    Google Scholar 

  169. A. Cravino and N. S. Sariciftci, Double-cable polymers for fullerene based organic optoelectronic applications, J. Mater. Chem., 2002, 12, 1931–1943.

    Article  CAS  Google Scholar 

  170. L. Schmidt-Mende and A. Fechtenkotter and K. Mullen and E. Moons and R. H. Friend and J. D. MacKenzie, Self-organized discotic liquid crystals for high-efficiency organic photovoltaics, Science, 2001, 293, 1119–1122.

    Article  CAS  PubMed  Google Scholar 

  171. E. H. A. Beckers and P. A. van Hal and A. Schenning and A. El-ghayoury and E. Peeters and M. T. Rispens and J. C. Hummelen and E. W. Meijer and R. A. J. Janssen, Singlet-energy transfer in quadruple hydrogen-bonded oligo(p-phenylenevinylene)-fullerene dyads, J. Mater. Chem., 2002, 12, 2054–2060.

    Article  CAS  Google Scholar 

  172. T. Gu and D. Tsamouras and C. Melzer and V. Krasnikov and J. P. Gisselbrecht and M. Gross, G. Hadziioannou and J. F. Nierengarten, Photovoltaic devices from fullerene oligophenyleneethynylene conjugates, ChemPhysChem, 2002, 3, 124–127.

    Article  CAS  PubMed  Google Scholar 

  173. T. Yamashiro, Y. Aso and T. Otsubo and H. Q. Tang, Y. Harima and K. Yamashita, Intramolecular energy transfer of [60]fullerene-linked oligothiophenes, Chem. Lett., 1999 443–444.

    Google Scholar 

  174. M. Fujitsuka and O. Ito and T. Yamashiro, Y. Aso and T. Otsubo, Solvent polarity dependence of photoinduced charge separation in a tetrathiophene-C60 dyad studied by pico- and nanosecond laser flash photolysis in the near-IR region, J. Phys. Chem. A, 2000, 104, 4876–4881.

    Article  CAS  Google Scholar 

  175. C. Martineau and P. Blanchard and D. Rondeau and J. Delaunay and J. Roncali, Synthesis and electronic properties of adducts of oligothienylenevinylenes and fullerene C60, Adv. Mater, 2002, 14, 283–287.

    Article  CAS  Google Scholar 

  176. D. Hirayama and K. Takimiya, Y. Aso and T. Otsubo and T. Hasobe and H. Yamada and H. Imahori and S. Fukuzumi and Y. Sakata, Large photocurrent generation of gold electrodes modified with [60]fullerene-linked oligothiophenes bearing a tripodal rigid anchor, J. Am. Chem. Soc., 2002, 124, 532–533.

    Article  CAS  PubMed  Google Scholar 

  177. L. Milgrom, Wet, wet, wet — Computers could get seriously sloppy, New Sci., 2000, 165, 15–15.

    Google Scholar 

  178. M. Grätzel and J. E. Moser, Solar Energy Conversion, in Electron Transfer in Chemistry, vol. 5, ed. V. Balzani, Wiley-VCH, Weinheim, 2001, pp. 589–644.

    Google Scholar 

  179. Y. Rubin, Ring opening reactions of fullerenes: Designed approaches to endohedral metal complexes, Top. Curr Chem., 1999, 199, 67–91.

    Article  CAS  Google Scholar 

  180. J. F. Nierengarten, Ring-opened fullerenes: An unprecedented class of ligands for supramolecular chemistry, Angew. Chem., Int. Ed., 2001, 40, 2973–2974.

    Article  CAS  Google Scholar 

  181. R. Dagani, Cagey chemistry, Chem. Eng. News, 2002, 80, 32–35.

    Article  Google Scholar 

  182. F. C. De Schryver, Time, space and spectrally resolved photochemistry from ensembles to single molecules, Pure Appl. Chem., 1998, 70, 2147–2156.

    Article  Google Scholar 

  183. A. Schenning and P. Jonkheijm and J. Hofkens and S. De Feyter and T. Asavei and M. Cotlet, F. C. De Schryver and E. W. Meijer, Formation and manipulation of supramolecular structures of oligo(p-phenylene-vinylene) terminated poly(propylene imine) dendrimers, Chem. Commun., 2002, 1264–1265.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Armaroli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armaroli, N. From metal complexes to fullerene arrays: exploring the exciting world of supramolecular photochemistry fifteen years after its birth. Photochem Photobiol Sci 2, 73–87 (2003). https://doi.org/10.1039/b210569a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b210569a

Navigation