Skip to main content
Log in

A time-resolved study of concentration quenching of disulfonated aluminium phthalocyanine fluorescence

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The effects of concentration on the fluorescence decay kinetics of disulfonated aluminium phthalocyanine (AlPcS2) were studied in several solvents. The degree of aggregation, which increased with total dye concentration, was estimated from the absorption spectra. The measured fluorescence decays were shorter and increasingly non-monoexponential with increasing dye concentration. However, stronger quenching was not correlated with higher aggregation. The fluorescence decays were analyzed using a model that assumes excitation energy migration between diffusing monomeric AlPcS2 and quenching by diffusing dimers, both governed by the Förster energy transfer mechanism. The model can explain the observations in three of the four solvents used (phosphate-buffered saline (PBS) pH = 11.5, ethanol, and 67% glycerol–33% water mixture) on the assumption that different dimer configurations are present and not all of them act as quenchers. In PBS at pH = 7.4 the theory predicts much stronger quenching than observed. Excitation energy migration between monomeric species at high dye concentration was confirmed by the observed decrease of the decay time of fluorescence anisotropy in viscous solutions of 67% glycerol, and appears to be a major factor in fluorescence quenching of AlPcS2 at high concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Phillips, Chemical mechanisms in photodynamic therapy with phthalocyanines, Progress in Reaction Kinetics, 1997, 22, 3–4, 175–300.

    Google Scholar 

  2. A. Beeby, S. M. Bishop, H. G. Meunier, M. S. C. Simpson, and D. Phillips, Complexing of fluoride ions to disulphonated aluminium phthalocyanine, in Photodynamic therapy and biomedical lasers, eds. P. Spinelli, M. Dal Fante and R. Marchesini, Elsevier, Amsterdam, 1992, 732–736.

    Google Scholar 

  3. M. S. C. Foley, A. Beeby, A. W. Parker, S. M. Bishop and D. Phillips, Excited triplet state photophysics of the sulphonated aluminum phthalocyanine bound to human serum albumin, J. Photochem. Photobiol. B, 1997, 38, 10–17.

    Article  CAS  Google Scholar 

  4. S. Dhami, A. J. De Mello, G. Rumbles, S. M. Bishop, D. Phillips and A. Beeby, Phthalocyanine fluorescence at high concentration: dimers or reabsorption effect?, Photochem. Photobiol., 1995, 61, 341–346.

    Article  CAS  Google Scholar 

  5. M. S. C. Foley, A. Beeby, A. W. Parker, S. M. Bishop and D. Phillips, Photophysics of disulphonated aluminum phthalocyanine in reverse micelles of Aerosol OT, J. Photochem. Photobiol. B, 1997, 38, 18–24.

    Article  CAS  Google Scholar 

  6. S. Dhami, J. J. Cosa, S. M. Bishop and D. Phillips, Photophysical characterization of sulfonated aluminum phthalocyanines in a cationic reversed micellar system, Langmuir, 1996, 12, 2, 293–300.

    Article  Google Scholar 

  7. S. Dhami, G. Rumbles, A. J. MacRobert and D. Phillips, Comparative photophysical study of disulfonated aluminum phthalocyanine in unilamellar vesicles and leukemic K562 cells, Photochem. Photobiol., 1997, 65, 1, 85–90

    Article  Google Scholar 

  8. S. Dhami and D. Phillips, Comparison of the photophysics of an aggregating and non-aggregating aluminium phthalocyanine system incorporated into unilamellar vesicles, J. Photochem. Photobiol. A, 1996, 100, 1–3, 77–84.

    Article  Google Scholar 

  9. M. Ambroz, A. J. MacRobert, J. Morgan, G. Rumbles, M. S. C. Foleyand D. Phillips, Time-resolved fluorescence spectroscopy and intracellular imaging of disulphonated aluminium phthalocyanine, J. Photochem. Photobiol. B, 1994, 22, 105–117.

    Article  CAS  Google Scholar 

  10. A. L. Plant, Mechanism of concentration quenching of a xanthene dye encapsulated in phospholipid liposomes, Photochem. Photobiol., 1986, 44, 4, 453-459.

    Article  Google Scholar 

  11. R. F. Chen and J. R. Knutson, Mechanism of fluorescence concentration quenching of carboxyfluorescein in liposomes: energy transfer to nonfluorescent dimers, Anal. Biochem., 1988, 172, 61–67

    Article  CAS  Google Scholar 

  12. A. D. Scully, A. Matsumoto and S. Hirayama, A time-resolved fluorescence study of electronic excitation-energy transport in concentrated dye solutions, Chem. Phys., 1991, 157, 1–2, 253–269.

    Article  Google Scholar 

  13. K. Nakamura, T. Kowaki, A. D. Scully and S. Hirayama, Quenching of chlorophyll a fluorescence by oxygen in highly concentrated solutions and microdroplets, J. Photochem. Photobiol. A, 1997, 104, 1–3, 141–149.

    Article  Google Scholar 

  14. M. Sikorski, E. Krystkowiak and R. P. Steer, The kinetics of fast fluorescence quenching processes, J. Photochem. Photobiol. A, 1998, 117, 1–16.

    Article  CAS  Google Scholar 

  15. C. S. Owen, Two dimensional diffusion theory: Cylindrical diffusion model applied to fluorescence quenching, J. Chem. Phys., 1975, 62, 8, 3204–3207.

    Article  Google Scholar 

  16. D. D. Eads, B. G. Dismer and G. R. Fleming, A subpicosecond, subnanosecond and steady-state study of diffusion influenced fluorescence quenching, J. Chem. Phys., 1990, 93 2, 1136.

    Article  CAS  Google Scholar 

  17. S. Jang, K. J. Shin and S. Lee, Effects of excitation migration and translational diffusion in the luminescence quenching dynamics, J. Chem. Phys., 1995, 102 2, 815–827.

    Article  CAS  Google Scholar 

  18. H. C. Joshi, H. Mishra, H. B. Tripathi and T. C. Pant, Role of diffusion in excitation energy transfer: a time-resolved study, J. Lumin., 2000, 90, 17–25.

    Article  CAS  Google Scholar 

  19. D. L. Andrews and G. Juzeliunas, The range dependence of fluorescence anisotropy in molecular energy transfer, J. Chem. Phys., 1991, 95 8, 5513–5518.

    Article  CAS  Google Scholar 

  20. M. Ambroz, A. Beeby, A. J. MacRobert, M. S. C. Simpson, R. K. Svensen, and D. Phillips, Preparative, analytical and fluorescence spectroscopic studies of sulphonated aluminium phthalocyanine photosensitisers, J. Photochem. Photobiol., B, 1991, 9, 87–95.

    Article  CAS  Google Scholar 

  21. D. V. O’Connor and D. Phillips, Time-correlated single-photon counting, Academic Press, London, 1984.

    Google Scholar 

  22. P. W. Atkins, Physical Chemistry, Oxford University Press, Oxford, 1990, p. 689.

    Google Scholar 

  23. R. B. Ostler, An investigation of intracellular PDT mechanisms, PhD thesis, University of London, 1997.

    Google Scholar 

  24. R. B. Ostler, A. D. Scully, A. G. Taylor, I. R. Gould, T. A. Smith, A. Waite and D. Phillips, The effect of pH on the photophysics and photochemistry of disulphonated aluminium phthalocyanine, Photochem. Photobiol., 2000, 71, 4, 397-404.

    Article  Google Scholar 

  25. R. S. Knox, Spectral effects of exciton splitting in “statistical pairs”, J. Phys. Chem., 1994, 98, 7270–7273

    Article  CAS  Google Scholar 

  26. CRC Handbook of Chemistry and Physics, ed. D. R. Lide, CRC Press Inc., 1995.

    Google Scholar 

  27. T. Tao, Time-dependent fluorescence depolarization and brownian rotational diffusion coefficients of macromolecules, Biopolymers, 1969, 8, 609–632.

    Article  CAS  Google Scholar 

  28. G. S. Beddard, S. E. Carlin and G. Porter, Concentration quenching of chlorophyll fluorescence in bilayer lipid vesicles and liposomes, Chem. Phys. Lett., 1976, 43 1, 27–32.

    Article  CAS  Google Scholar 

  29. M. S. C. Simpson, A. Beeby, S. M. Bishop, A. J. MacRobert, A. W. Parker, and D. Phillips, Time resolved spectroscopic studies of sulphonated aluminium phthalocyanine triplet states, Proc. SPIE-Int. Soc. Opt. Eng., 1992, 1640, 520–529

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Jean Kossanyi on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrášek, Z., Phillips, D. A time-resolved study of concentration quenching of disulfonated aluminium phthalocyanine fluorescence. Photochem Photobiol Sci 2, 236–244 (2003). https://doi.org/10.1039/b209906c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b209906c

Navigation